An accurate recognition of facial expression by extended wavelet deep convolutional neural network

被引:1
|
作者
Dubey, Arun Kumar [1 ]
Jain, Vanita [2 ]
机构
[1] GGSIPU, Univ Sch Informat Commun & Technol, Delhi, India
[2] Bharati Vidyapeeths Coll Engn, New Delhi, India
关键词
Image pre-processing; Face detection; Feature extraction; Feature selection; Facial expression recognition; CNN;
D O I
10.1007/s11042-022-12871-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Facial expressions are essential in community based interactions and in the analysis of emotions behaviour. The automatic identification of face is a motivating topic for the researchers because of its numerous applications like health care, video conferencing, cognitive science etc. In the computer vision with the facial images, the automatic detection of facial expression is a very challenging issue to be resolved. An innovative methodology is introduced in the presented work for the recognition of facial expressions. The presented methodology is described in subsequent stages. At first, input image is taken from the facial expression database and pre-processed with high frequency emphasis (HFE) filtering and modified histogram equalization (MHE). After the process of image enhancement, Viola Jones (VJ) framework is utilized to detect the face in the images and also the face region is cropped by finding the face coordinates. Afterwards, different effective features such as shape information is extracted from enhanced histogram of gradient (EHOG feature), intensity variation is extracted with mean, standard deviation and skewness, facial movement variation is extracted with facial action coding (FAC),texture is extracted using weighted patch based local binary pattern (WLBP) and spatial information is extracted byentropy based Spatial feature. Subsequently, dimensionality of the features are reduced by attaining the most relevant features using Residual Network (ResNet). Finally, extended wavelet deep convolutional neural network (EWDCNN) classifier uses the extracted features and accurately detects the face expressions as sad, happy, anger, fear disgust, surprise and neutral classes. The implementation platform used in the work is PYTHON. The presented technique is tested with the three datasets such as JAFFE, CK+ and Oulu-CASIA.
引用
收藏
页码:28295 / 28325
页数:31
相关论文
共 50 条
  • [41] Facial Expression Recognition Based on Random Forest and Convolutional Neural Network
    Wang, Yingying
    Li, Yibin
    Song, Yong
    Rong, Xuewen
    [J]. INFORMATION, 2019, 10 (12)
  • [42] Facial Expression Recognition using Convolutional Neural Network with Data Augmentation
    Ahmed, Tawsin Uddin
    Hossain, Sazzad
    Hossain, Mohammad Shahadat
    Ul Islam, Raihan
    Andersson, Karl
    [J]. 2019 JOINT 8TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV) AND 2019 3RD INTERNATIONAL CONFERENCE ON IMAGING, VISION & PATTERN RECOGNITION (ICIVPR) WITH INTERNATIONAL CONFERENCE ON ACTIVITY AND BEHAVIOR COMPUTING (ABC), 2019, : 336 - 341
  • [43] POOLING MAP ADAPTATION IN CONVOLUTIONAL NEURAL NETWORK FOR FACIAL EXPRESSION RECOGNITION
    Li, Zhiyuan
    Han, Shizhong
    Khan, Ahmed Shehab
    Cai, Jie
    Meng, Zibo
    O'Reilly, James
    Tong, Yan
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 1108 - 1113
  • [44] Performance Study of Facial Expression Recognition Using Convolutional Neural Network
    Aza, Marde Fasma'ul
    Suciati, Nanik
    Hidayati, Shintami Chusnul
    [J]. 2020 6TH INTERNATIONAL CONFERENCE ON SCIENCE IN INFORMATION TECHNOLOGY (ICSITECH): EMBRACING INDUSTRY 4.0: TOWARDS INNOVATION IN DISASTER MANAGEMENT, 2020, : 121 - 126
  • [45] Multi pose facial expression recognition based on convolutional neural network
    Feng, Yongliang
    [J]. INTERNATIONAL JOURNAL OF BIOMETRICS, 2022, 14 (3-4) : 253 - 267
  • [46] Efficient Recognition of Facial Expression with Lightweight Octave Convolutional Neural Network
    Lai, Shou-Chuan
    Chen, Ching-Yi
    Li, Jian-Hong
    Chiu, Fu -Chien
    [J]. JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2022, 66 (04)
  • [47] Research on Facial Expression Recognition Algorithm Based on Convolutional Neural Network
    Zhang, Xiaobo
    Yang, Yuliang
    Zhang, Linhao
    Li, Wanchong
    Dang, Shuai
    Wang, Peng
    Zhu, Mengyu
    [J]. 2019 28TH WIRELESS AND OPTICAL COMMUNICATIONS CONFERENCE (WOCC), 2019, : 271 - 275
  • [48] Facial Expression Recognition Using Salient Features and Convolutional Neural Network
    Uddin, Md. Zia
    Khaksar, Weria
    Torresen, Jim
    [J]. IEEE ACCESS, 2017, 5 : 26146 - 26161
  • [49] Comparison of Convolutional Neural Network Performances in Pain Facial Expression Recognition
    Lima, Leonardo
    Santos, Pedro
    Ribeiro, Bruno
    Magalhaes, Wallace
    Serrao, Mikaela Kalline M.
    Costa, Marly. G. F.
    Costa Filho, Cicero F. F.
    [J]. 2023 19TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, SIPAIM, 2023,
  • [50] Three convolutional neural network models for facial expression recognition in the wild
    Shao, Jie
    Qian, Yongsheng
    [J]. NEUROCOMPUTING, 2019, 355 : 82 - 92