On the origin of heavy-tail statistics in equations of the Nonlinear Schrodinger type

被引:29
|
作者
Onorato, Miguel [1 ,2 ]
Proment, Davide [3 ]
El, Gennady [4 ]
Randoux, Stephane [5 ]
Suret, Pierre [5 ]
机构
[1] Univ Torino, Dipartimento Fis, I-10125 Turin, Italy
[2] INFN, Sez Torino, I-10125 Turin, Italy
[3] Univ East Anglia, Sch Math, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England
[4] Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics, England
[5] Univ Lille, Lab Phys Lasers Atomes & Mol, UMR 8523, CNRS, Villeneuve Dascq, France
关键词
Rogue waves; Freak waves; Nonlinear Schrodinger; ROGUE WAVES;
D O I
10.1016/j.physleta.2016.07.048
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the formation of extreme events in incoherent systems described by the Nonlinear Schrodinger type of equations. We consider an exact identity that relates the evolution of the normalized fourth-order moment of the probability density function of the wave envelope to the rate of change of the width of the Fourier spectrum of the wave field. We show that, given an initial condition characterized by some distribution of the wave envelope, an increase of the spectral bandwidth in the focusing/defocusing regime leads to an increase/decrease of the probability of formation of rogue waves. Extensive numerical simulations in 10+1 and 2D+1 are also performed to confirm the results. (C) 2016 Published by Elsevier B.V.
引用
收藏
页码:3173 / 3177
页数:5
相关论文
共 50 条
  • [21] Spatio-temporal pareto modelling of heavy-tail data
    Nieto-Barajas, Luis E.
    Huerta, Gabriel
    SPATIAL STATISTICS, 2017, 20 : 92 - 109
  • [23] REGULARITY OF SOLUTIONS TO NONLINEAR EQUATIONS OF SCHRODINGER TYPE
    SJOLIN, P
    TOHOKU MATHEMATICAL JOURNAL, 1993, 45 (02) : 191 - 203
  • [24] Nonlinear singular Schrodinger-type equations
    Lange, H
    Poppenberg, M
    Teismann, H
    NONLINEAR THEORY OF GENERALIZED FUNCTIONS, 1999, 401 : 113 - 128
  • [25] Periodic solutions of nonlinear Schrodinger type equations
    Liu, GT
    Fan, TY
    CHINESE PHYSICS, 2004, 13 (06): : 805 - 810
  • [26] New integrable equations of nonlinear Schrodinger type
    Calogero, F
    Degasperis, A
    STUDIES IN APPLIED MATHEMATICS, 2004, 113 (01) : 91 - 137
  • [27] On the Use of the Kolmogorov–Wiener Filter for Heavy-tail Process Prediction
    Gorev V.
    Gusev A.
    Korniienko V.
    Shedlovska Y.
    Journal of Cyber Security and Mobility, 2023, 12 (03): : 315 - 338
  • [28] Efficient algorithms for heavy-tail analysis under interval uncertainty
    Vladik Kreinovich
    Monchaya Chiangpradit
    Wararit Panichkitkosolkul
    Annals of Operations Research, 2012, 195 : 73 - 96
  • [29] The coupled nonlinear Schrodinger-type equations
    Abdelrahman, Mahmoud A. E.
    Hassan, S. Z.
    Inc, Mustafa
    MODERN PHYSICS LETTERS B, 2020, 34 (06):
  • [30] On nonparaxial nonlinear Schrodinger-type equations
    Cano, B.
    Duran, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 373 (373)