Hyperspectral image compression based on online learning spectral features dictionary

被引:12
|
作者
Jifara, Worku [1 ]
Jiang, Feng [1 ]
Zhang, Bing [2 ]
Wang, Huapeng [3 ]
Li, Jinsong [3 ]
Grigorev, Aleksei [1 ]
Liu, Shaohui [1 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China
[2] China Elect Technol Grp Corp, Inst 27, Zhengzhou 450000, Henan, Peoples R China
[3] China Elect Power Res Inst, Beijing 100192, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image; Online learning; Spectral clustering; Lossy compression; Spectral dictionary; LOSSLESS COMPRESSION; JPEG2000;
D O I
10.1007/s11042-017-4724-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a novel method of lossy hyperspectral image compression using online learning dictionary. Spectral dictionary that learned in sparse coding mode could be used to represent the corresponding material. From the perspective of sparse coding, learning a sparse dictionary could achieve a better result of data decorrelation. In order to compress the hyperspectral data, an online learning sparse coding dictionary which could describe the characteristics of spectral curve was created to represent and reconstruct hyperspectral data. In the online learning phase, effective clustering algorithm is applied to generate and update the dictionary more properly. Results indicate that dictionary achieved by our method could improve the compression quality of hyperspectral image observably.
引用
收藏
页码:25003 / 25014
页数:12
相关论文
共 50 条
  • [31] PANCHROMATIC IMAGE BASED DICTIONARY LEARNING FOR HYPERSPECTRAL IMAGERY DENOISING
    Ye, Minchao
    Qian, Yuntao
    Wang, Qi
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 4130 - 4133
  • [32] HYPERSPECTRAL IMAGE COMPRESSION USING LEARNED CLASSIFIED DICTIONARY
    Xu, Dawei
    Zhang, Rong
    Wu, Qian
    2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2015,
  • [33] Learning Hierarchical Spectral-Spatial Features for Hyperspectral Image Classification
    Zhou, Yicong
    Wei, Yantao
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (07) : 1667 - 1678
  • [34] SPECTRAL SUPER-RESOLUTION FOR HYPERSPECTRAL IMAGE RECONSTRUCTION USING DICTIONARY AND MACHINE LEARNING
    Bhattacharya, Swastik
    Kindel, Bruce
    Remane, Kedar
    Tang, Gongguo
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1764 - 1767
  • [35] Hyperspectral Image Compression Optimized for Spectral Unmixing
    Karami, Azam
    Heylen, Rob
    Scheunders, Paul
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10): : 5884 - 5894
  • [36] Hyperspectral image compression with optimization for spectral analysis
    Romines, Kameron
    Hong, Edwin S.
    DCC 2007: DATA COMPRESSION CONFERENCE, PROCEEDINGS, 2007, : 400 - 400
  • [37] Hyperspectral image compression through spectral clustering
    Siala, K
    Benazza-Benyahia, A
    ISCCSP : 2004 FIRST INTERNATIONAL SYMPOSIUM ON CONTROL, COMMUNICATIONS AND SIGNAL PROCESSING, 2004, : 435 - 438
  • [38] Spectral Decomposition Methods for Hyperspectral Image Compression
    Jacobs, Paul
    Miller, Christian
    Wolff, Jared
    Sun, Xiuhong
    Coronado, Patrick L.
    Zhang, Guo-Qiang
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 3529 - +
  • [39] Boosted Dictionary Learning for Image Compression
    Nejati, Mansour
    Samavi, Shadrokh
    Karimi, Nader
    Soroushmehr, Sayed Mohammad Reza
    Najarian, Kayvan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (10) : 4900 - 4915
  • [40] Learning Deep Dictionary for Hyperspectral Image Denoising
    Huo, Leigang
    Feng, Xiangchu
    Huo, Chunlei
    Pan, Chunhong
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2015, E98D (07): : 1401 - 1404