Twizzler: A Data-centric OS for Non-volatile Memory

被引:5
|
作者
Bittman, Daniel [1 ]
Alvaro, Peter [1 ]
Mehra, Pankaj
Long, Darrell D. E. [2 ]
Miller, Ethan L. [1 ,3 ]
机构
[1] UC Santa Cruz, CSE, 1156 High St, Santa Cruz, CA 95064 USA
[2] UC Santa Cruz, BSOE, 1156 High St, Santa Cruz, CA USA
[3] Pure Storage, Mountain View, CA USA
基金
美国国家科学基金会;
关键词
Persistentmemory; non-volatile memory; NVM; PMEM; single-level store; global address space; memory hierarchy;
D O I
10.1145/3454129
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Byte-addressable, non-volatile memory (NVM) presents an opportunity to rethink the entire system stack. We present Twizzler, an operating system redesign for this near-future. Twizzler removes the kernel from the I/O path, provides programs with memory-style access to persistent data using small (64 bit), object-relative cross-object pointers, and enables simple and efficient long-term sharing of data both between applications and between runs of an application. Twizzler provides a clean-slate programming model for persistent data, realizing the vision of UNIX in a world of persistent RAM. We show that Twizzler is simpler, more extensible, and more secure than existing I/O models and implementations by building software for Twizzler and evaluating it on NVM DIMMs. Most persistent pointer operations in Twizzler impose less than 0.5 ns added latency. Twizzler operations are up to 13x faster than UNIX, and SQLite queries are up to 4.2x faster than on PMDK. YCSB workloads ran 1.1-2.9x faster on Twizzler than on native and NVM-optimized SQLite backends.
引用
收藏
页数:31
相关论文
共 50 条
  • [41] SeNonDiv: Securing Non-Volatile Memory using Hybrid Memory and Critical Data Diversion
    Nath, Arijit
    Bhosle, Manik B.
    Kapoor, Hemangee K.
    [J]. PROCEEDINGS OF THE 2021 TWENTY SECOND INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN (ISQED 2021), 2021, : 522 - 528
  • [42] Redesign the Memory Allocator for Non-Volatile Main Memory
    Yu, Songping
    Xiao, Nong
    Deng, Mingzhu
    Liu, Fang
    Chen, Wei
    [J]. ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2017, 13 (03)
  • [43] Data-Centric AI
    Malerba, Donato
    Pasquadibisceglie, Vincenzo
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2024,
  • [44] ZEBRA: Data-Centric Contention Management in Hardware Transactional Memory
    Titos-Gil, Ruben
    Negi, Anurag
    Acacio, Manuel E.
    Garcia, Jose M.
    Stenstrom, Per
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2014, 25 (05) : 1359 - 1369
  • [45] Data-Centric Computing Frontiers: A Survey On Processing-In-Memory
    Siegl, Patrick
    Buchty, Rainer
    Berekovic, Mladen
    [J]. MEMSYS 2016: PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON MEMORY SYSTEMS, 2016, : 295 - 308
  • [46] ODOMETER USING NON-VOLATILE MEMORY.
    Yates, Phil
    [J]. Electronic Engineering (London), 1984, 56 (687): : 169 - 172
  • [47] Non-volatile memory based on silicon nanoclusters
    Novikov, Yu. N.
    [J]. SEMICONDUCTORS, 2009, 43 (08) : 1040 - 1045
  • [48] Programming for Non-Volatile Main Memory Is Hard
    Ren, Jinglei
    Hu, Qingda
    Khan, Samira
    Moscibroda, Thomas
    [J]. PROCEEDINGS OF THE 8TH ASIA-PACIFIC WORKSHOP ON SYSTEMS (APSYS '17), 2017,
  • [49] Persistence Programming Models for Non-volatile Memory
    Boehm, Hans-J.
    Chakrabarti, Dhruva R.
    [J]. ACM SIGPLAN NOTICES, 2016, 51 (11) : 55 - 67
  • [50] Non-volatile memory technology: A view of the future
    Lai, S
    [J]. 2004 NON-VOLATILE MEMORY TECHNOLOGY SYMPOSIUM, PROCEEDINGS, 2004, : 129 - 129