A hybrid control strategy for active vibration isolation with electrohydraulic actuators

被引:28
|
作者
Zhang, Y
Alleyne, AG
Zheng, D
机构
[1] Eaton Corp, Innovat Ctr, Southfield, MI 48076 USA
[2] Univ Illinois, Dept Mech & Ind Engn, Urbana, IL 61801 USA
[3] GE Co, Mech Dynam Lab, Schenectady, NY 12301 USA
关键词
electrohydraulic systems; adaptive control; robust control; switching algorithms; active control; vibration isolation;
D O I
10.1016/j.conengprac.2004.03.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a hybrid control approach to circumvent the basic trade-off between performance and robustness from an individual controller. This hybrid control strategy utilizes a robust controller for guaranteed robustness when the plant model is not well known, and employs an adaptive controller for high performance after sufficient plant information has been collected. To avoid a degraded transient after controller switching, a bumpless transfer scheme is designed and incorporated into this hybrid control approach. This bumpless transfer design is an extension from a conventional latent tracking bumpless transfer design for a single-input single-output (SISO) plant with 1 degree of freedom (DOF) controllers to either a SISO plant with multiple DOF controllers or a multi-input multi-output (MIMO) plant. Experimental results implemented on an active vibration isolation testbed demonstrate the effectiveness of the proposed hybrid control strategy. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:279 / 289
页数:11
相关论文
共 50 条
  • [11] Hybrid Active Vibration Control of Helicopter Fuselage Driven by Piezoelectric Stack Actuators
    Lang, Kai
    Xia, Pinqi
    [J]. JOURNAL OF AIRCRAFT, 2019, 56 (02): : 719 - 729
  • [12] Active vibration isolation with stiff actuators and inertial sensors
    Hyland, DC
    King, JA
    Davis, LD
    [J]. ACTUATOR TECHNOLOGY AND APPLICATIONS, 1996, 2865 : 93 - 102
  • [13] Active Vibration Isolation Devices with Inertial Servo Actuators
    V. A. Melik-Shakhnazarov
    V. I. Strelov
    D. V. Sofiyanchuk
    A. A. Tregubenko
    [J]. Cosmic Research, 2018, 56 : 140 - 143
  • [14] Model of the Active Vibration Isolation Platform with Magnetostrictive Actuators
    Gao, Yanlei
    Li, Lin
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2008, : 346 - 350
  • [15] Active Vibration Isolation Devices with Inertial Servo Actuators
    Melik-Shakhnazarov, V. A.
    Strelov, V. I.
    Sofiyanchuk, D. V.
    Tregubenko, A. A.
    [J]. COSMIC RESEARCH, 2018, 56 (02) : 140 - 143
  • [16] Automation of a Hybrid Control for Electrohydraulic Servo-Actuators with Residual Dynamics
    Sidhom, Lilia
    Chihi, Ines
    Smaoui, Mohamed
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (06):
  • [17] A Model of Magnetostrictive Actuators for Active Vibration Control
    Dezza, Francesco Castelli
    Cinquemani, Simone
    Mauri, Marco
    Maglio, Matteo
    Resta, Ferruccio
    [J]. 2011 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2011,
  • [18] Giant magnetostrictive actuators for active vibration control
    Zhang, TL
    Jiang, CB
    Zhang, H
    Xu, HB
    [J]. SMART MATERIALS & STRUCTURES, 2004, 13 (03): : 473 - 477
  • [19] A model of magnetostrictive actuators for active vibration control
    Braghin, F.
    Cinquemani, S.
    Resta, F.
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2011, 165 (02) : 342 - 350
  • [20] Active Vibration Control using DEAP Actuators
    Sarban, Rahimullah
    Jones, Richard W.
    [J]. ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2010, 2010, 7642