Machine learning-based prediction of relapse in rheumatoid arthritis patients using data on ultrasound examination and blood test

被引:16
|
作者
Matsuo, Hidemasa [1 ]
Kamada, Mayumi [2 ]
Imamura, Akari [1 ]
Shimizu, Madoka [1 ]
Inagaki, Maiko [1 ]
Tsuji, Yuko [1 ]
Hashimoto, Motomu [3 ,4 ]
Tanaka, Masao [3 ]
Ito, Hiromu [3 ,5 ,6 ]
Fujii, Yasutomo [1 ]
机构
[1] Kyoto Univ, Grad Sch Med, Dept Human Hlth Sci, Sakyo Ku, 53 Kawahara Cho, Kyoto 6068507, Japan
[2] Kyoto Univ, Grad Sch Med, Dept Biomed Data Intelligence, Kyoto, Japan
[3] Kyoto Univ, Grad Sch Med, Dept Adv Med Rheumat Dis, Kyoto, Japan
[4] Osaka City Univ, Grad Sch Med, Dept Clin Immunol, Osaka, Japan
[5] Kyoto Univ, Grad Sch Med, Dept Orthopaed Surg, Kyoto, Japan
[6] Kurashiki Cent Hosp, Dept Orthopaed Surg, Okayama, Japan
关键词
CLINICAL REMISSION; BONE EROSION; RISK; PROGRESSION; SYNOVITIS; JOINTS;
D O I
10.1038/s41598-022-11361-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent effective therapies enable most rheumatoid arthritis (RA) patients to achieve remission; however, some patients experience relapse. We aimed to predict relapse in RA patients through machine learning (ML) using data on ultrasound (US) examination and blood test. Overall, 210 patients with RA in remission at baseline were dichotomized into remission (n = 150) and relapse (n = 60) based on the disease activity at 2-year follow-up. Three ML classifiers [Logistic Regression, Random Forest, and extreme gradient boosting (XGBoost)] and data on 73 features (14 US examination data, 54 blood test data, and five data on patient information) at baseline were used for predicting relapse. The best performance was obtained using the XGBoost classifier (area under the receiver operator characteristic curve (AUC) = 0.747), compared with Random Forest and Logistic Regression (AUC = 0.719 and 0.701, respectively). In the XGBoost classifier prediction, ten important features, including wrist/metatarsophalangeal superb microvascular imaging scores, were selected using the recursive feature elimination method. The performance was superior to that predicted by researcher-selected features, which are conventional prognostic markers. These results suggest that ML can provide an accurate prediction of relapse in RA patients, and the use of predictive algorithms may facilitate personalized treatment options.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Machine learning-based prediction of relapse in rheumatoid arthritis patients using data on ultrasound examination and blood test
    Hidemasa Matsuo
    Mayumi Kamada
    Akari Imamura
    Madoka Shimizu
    Maiko Inagaki
    Yuko Tsuji
    Motomu Hashimoto
    Masao Tanaka
    Hiromu Ito
    Yasutomo Fujii
    [J]. Scientific Reports, 12
  • [2] Machine learning-based prediction of diabetic patients using blood routine data
    Li, Honghao
    Su, Dongqing
    Zhang, Xinpeng
    He, Yuanyuan
    Luo, Xu
    Xiong, Yuqiang
    Zou, Min
    Wei, Huiyan
    Wen, Shaoran
    Xi, Qilemuge
    Zuo, Yongchun
    Yang, Lei
    [J]. METHODS, 2024, 229 : 156 - 162
  • [3] Machine learning-based prediction model for responses of bDMARDs in patients with rheumatoid arthritis and ankylosing spondylitis
    Seulkee Lee
    Seonyoung Kang
    Yeonghee Eun
    Hong-Hee Won
    Hyungjin Kim
    Jaejoon Lee
    Eun-Mi Koh
    Hoon-Suk Cha
    [J]. Arthritis Research & Therapy, 23
  • [4] Machine learning-based prediction model for responses of bDMARDs in patients with rheumatoid arthritis and ankylosing spondylitis
    Lee, Seulkee
    Kang, Seonyoung
    Eun, Yeonghee
    Won, Hong-Hee
    Kim, Hyungjin
    Lee, Jaejoon
    Koh, Eun-Mi
    Cha, Hoon-Suk
    [J]. ARTHRITIS RESEARCH & THERAPY, 2021, 23 (01)
  • [5] Prediction of osteoporosis in patients with rheumatoid arthritis using machine learning
    Chaewon Lee
    Gihun Joo
    Seunghun Shin
    Hyeonseung Im
    Ki Won Moon
    [J]. Scientific Reports, 13 (1)
  • [6] Prediction of osteoporosis in patients with rheumatoid arthritis using machine learning
    Lee, Chaewon
    Joo, Gihun
    Shin, Seunghun
    Im, Hyeonseung
    Moon, Ki Won
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01):
  • [7] Machine Learning-Based Prediction of Hemoglobinopathies Using Complete Blood Count Data
    Schipper, Anoeska
    Rutten, Matthieu
    van Gammeren, Adriaan
    Harteveld, Cornelis L.
    Urrechaga, Eloisa
    Weerkamp, Floor
    den Besten, Gijs
    Krabbe, Johannes
    Slomp, Jennichjen
    Schoonen, Lise
    Broeren, Maarten
    van Wijnen, Merel
    Huijskens, Mirelle J. A. J.
    Koopmann, Tamara
    van Ginneken, Bram
    Kusters, Ron
    Kurstjens, Steef
    [J]. CLINICAL CHEMISTRY, 2024, 70 (08) : 1064 - 1075
  • [8] Machine Learning-based Prediction of Test Power
    Dhotre, Harshad
    Eggersgluess, Stephan
    Chakrabarty, Krishnendu
    Drechsler, Rolf
    [J]. 2019 IEEE EUROPEAN TEST SYMPOSIUM (ETS), 2019,
  • [9] Deep Learning-Based Screening Test for Cognitive Impairment Using Basic Blood Test Data for Health Examination
    Sakatani, Kaoru
    Oyama, Katsunori
    Hu, Lizhen
    [J]. FRONTIERS IN NEUROLOGY, 2020, 11
  • [10] PREDICTION OF RESPONSE TO METHOTREXATE IN PATIENTS WITH RHEUMATOID ARTHRITIS: A MACHINE LEARNING APPROACH USING CLINICAL TRIAL DATA
    Duong, S.
    Crowson, C. S.
    Athreya, A.
    Atkinson, E.
    Davis, J. M., III
    Warrington, K. J.
    Matteson, E.
    Weinshilboum, R.
    Wang, L.
    Myasoedova, E.
    [J]. ANNALS OF THE RHEUMATIC DISEASES, 2022, 81 : 513 - 514