Improved high temperature growth of GaInNAsSb by molecular beam epitaxy

被引:3
|
作者
Maranowski, KD [1 ]
Smith, JM [1 ]
Fanning, TR [1 ]
Jewell, JL [1 ]
机构
[1] Picolight Inc, Louisville, CO 80027 USA
来源
关键词
D O I
10.1116/1.1924422
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
GaInNAs(Sb) quantum wells were grown by plasma-assisted molecular beam epitaxy on GaAs substrates. The effects of both growth temperature and the addition of Sb flux on the material quality were investigated with photoluminescence and x-ray diffraction. The photoluminescence intensity and structural quality of GaInNAs quantum wells drops rapidly as the growth temperature is increased above 480 degrees C. However, at a growth temperature of 500 degrees C, adding a relatively small amount of Sb dramatically recovers the photoluminescence intensity of the quantum well. Furthermore, the addition of Sb suppresses N surface diffusion, enabling the growth of high quality GaInNAsSb at temperatures as high as 530 degrees C. (c) 2005 American Vacuum Society.
引用
收藏
页码:1064 / 1067
页数:4
相关论文
共 50 条
  • [31] Comparison Of GaInNAs And GaInNAsSb Solar Cells Grown By Plasma-Assisted Molecular Beam Epitaxy
    Aho, Arto
    Tukiainen, Antti
    Korpijarvi, Ville-Markus
    Polojarvi, Ville
    Salmi, Joel
    Guina, Mircea
    8TH INTERNATIONAL CONFERENCE ON CONCENTRATING PHOTOVOLTAIC SYSTEMS (CPV-8), 2012, 1477 : 49 - 52
  • [32] Growth kinetics and substrate stability during high-temperature molecular beam epitaxy of AlN nanowires
    John, P.
    Ruiz, M. Gomez
    van Deurzen, L.
    Laehnemann, J.
    Trampert, A.
    Geelhaar, L.
    Brandt, O.
    Auzelle, T.
    NANOTECHNOLOGY, 2023, 34 (46)
  • [33] Ultra-high Temperature Growth of Layered Hexagonal Boron Nitride on Sapphire by Molecular Beam Epitaxy
    Page, Ryan Lowry
    Cho, Yongjin
    Casamento, Joseph
    Rouvimov, Sergei
    Xing, Huili Grace
    Jena, Debdeep
    2019 COMPOUND SEMICONDUCTOR WEEK (CSW), 2019,
  • [34] Effects of As pressure and growth temperature on the growth of TlGaAs films by molecular-beam epitaxy
    Kajikawa, Y
    Kobayashi, N
    Nishimoto, N
    JOURNAL OF APPLIED PHYSICS, 2003, 93 (05) : 2752 - 2757
  • [35] High temperature scanning tunneling microscopy during molecular beam epitaxy
    Voigtlander, B
    Zinner, A
    Weber, T
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1996, 67 (07): : 2568 - 2572
  • [36] An atomic carbon source for high temperature molecular beam epitaxy of graphene
    J. D. Albar
    A. Summerfield
    T. S. Cheng
    A. Davies
    E. F. Smith
    A. N. Khlobystov
    C. J. Mellor
    T. Taniguchi
    K. Watanabe
    C. T. Foxon
    L. Eaves
    P. H. Beton
    S. V. Novikov
    Scientific Reports, 7
  • [37] An atomic carbon source for high temperature molecular beam epitaxy of graphene
    Albar, J. D.
    Summerfield, A.
    Cheng, T. S.
    Davies, A.
    Smith, E. F.
    Khlobystov, A. N.
    Mellor, C. J.
    Taniguchi, T.
    Watanabe, K.
    Foxon, C. T.
    Eaves, L.
    Beton, P. H.
    Novikov, S. V.
    SCIENTIFIC REPORTS, 2017, 7
  • [38] Structural characterization of molecular beam epitaxy grown GaInNAs and GaInNAsSb quantum wells by transmission electron microscopy
    Gugov, T
    Wistey, M
    Yuen, H
    Bank, S
    Harris, JS
    NEW MATERIALS FOR MICROPHOTONICS, 2004, 817 : 267 - 272
  • [39] Molecular beam epitaxy growth of GaAsN layers with high luminescence efficiency
    Kovsh, AR
    Wang, JS
    Wei, L
    Shiao, RS
    Chi, JY
    Volovik, BV
    Tsatsul'nikov, AF
    Ustinov, VM
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2002, 20 (03): : 1158 - 1162
  • [40] Growth of novel broadband high reflection mirrors by molecular beam epitaxy
    Schön, S.
    Zogg, H.
    Keller, U.
    Journal of Crystal Growth, 1999, 201 : 1020 - 1023