Surface modification of hematite photoanode films with rhodium

被引:6
|
作者
Zhang Minglong [1 ,2 ,3 ]
Luo Wenjun [1 ,2 ]
Li Zhaosheng [1 ,2 ]
Yu Tao [1 ]
Zou Zhigang [1 ]
机构
[1] Nanjing Univ, Natl Lab Solid Microstruct, Ecomat & Renewable Energy Res Ctr, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Dept Mat Sci & Engn, Nanjing 210093, Jiangsu, Peoples R China
[3] Xuzhou Airforce Coll, Dept Airfield, Xuzhou 221000, Peoples R China
基金
中国国家自然科学基金;
关键词
hematite; photoelectrochemistry; solar energy storage; hydrogen; OXYGEN-EVOLVING CATALYST; WATER OXIDATION; ALPHA-FE2O3; ELECTRODES; FERRIC-OXIDE; NANOSTRUCTURE; SI;
D O I
10.1007/s12598-011-0233-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Si and Ti codoped hematite (alpha-Fe2O3) photoanode film was dripped by Na3RhCl6 center dot 12H(2)O alkaline solution to negatively shift the onset potential of alpha-Fe2O3 photoanode by similar to 200 mV. The photocurrent densities of as-treated and untreated alpha-Fe2O3 are 0.6, and 0.08 mA/cm(2), respectively at 0 V vs. Ag/AgCl in the electrolyte of 1 M NaOH aqueous solution under 500 W xenon illumination. The IPCE (incident photon to current efficiency) of the as-treated alpha-Fe2O3 is 5.2% at 365 nm, 0 V vs. Ag/AgCl. A plausible explanation is proposed for the enhanced alpha-Fe2O3 photoelectrochemical responses. The result shows that rhodium could be ranked as an efficient oxygen evolution catalyst.
引用
收藏
页码:38 / 41
页数:4
相关论文
共 50 条
  • [31] Surface modification of nanocellulose films
    Peresin, Maria Soledad
    Kammiovirta, Karri
    Jari, Vartiainen
    Setala, Harri
    Osterberg, Monika
    Johansson, Leena-Sisko
    Tammelin, Tekla
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [32] Surface modification of zein films
    Biswas, Atanu
    Selling, Gordon W.
    Woods, Kristen Kruger
    Evans, Kervin
    [J]. INDUSTRIAL CROPS AND PRODUCTS, 2009, 30 (01) : 168 - 171
  • [33] Sacrificial Interlayer for Promoting Charge Transport in Hematite Photoanode
    Zhang, Kai
    Dong, Tianjiao
    Xie, Guancai
    Guan, Liming
    Guo, Beidou
    Xiang, Qin
    Dai, Yawen
    Tian, Lianqiu
    Batool, Aisha
    Jan, Saad Ullah
    Boddula, Rajender
    Thebo, Akbar Ali
    Gong, Jian Ru
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (49) : 42723 - 42733
  • [34] Understanding the fundamental electrical and photoelectrochemical behavior of a hematite photoanode
    Soares, Mario R. S.
    Goncalves, Ricardo H.
    Nogueira, Icamira C.
    Bettini, Jefferson
    Chiquito, Adenilson J.
    Leite, Edson R.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (31) : 21780 - 21788
  • [35] A morphology effect of hematite photoanode for photoelectrochemical water oxidation
    Liu, Zilong
    Wang, Kexin
    Xiao, Li
    Chen, Xuejiao
    Ren, Xiaodi
    Lu, Juntao
    Zhuang, Lin
    [J]. RSC ADVANCES, 2014, 4 (71) : 37701 - 37704
  • [36] Modification of Hematite Photoanode with Cobalt Based Oxygen Evolution Catalyst via Bifunctional Linker Approach for Efficient Water Splitting
    Ahmed, Amira Y.
    Ahmed, Mahmoud G.
    Kandiel, Tarek A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (41): : 23415 - 23420
  • [37] Self-surface-passivation of titanium doped hematite photoanode for efficient solar water and formaldehyde oxidation
    Zheng, Dezhou
    He, Xinjun
    Xu, Wei
    Lu, Xihong
    [J]. MATERIALS RESEARCH BULLETIN, 2017, 96 : 354 - 359
  • [38] Dual modification of hematite photoanode by Sn-doping and Nb2O5 layer for water oxidation
    Jeon, Tae Hwa
    Bokare, Alok D.
    Han, Dong Suk
    Abdel-Wahab, Ahmed
    Park, Hyunwoong
    Choi, Wonyong
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 201 : 591 - 599
  • [39] Compact hematite buffer layer as a promoter of nanorod photoanode performances
    Milan, R.
    Cattarin, S.
    Comisso, N.
    Baratto, C.
    Kaunisto, K.
    Tkachenko, N. V.
    Concina, I.
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [40] Activation of hematite photoanode synthesized at low temperature by W doping
    Changtong Ma
    Dongfeng Li
    Lin Liu
    Xiuli Wang
    Hongxian Han
    [J]. Journal of Energy Chemistry, 2024, 97 (10) : 149 - 155