B-spline estimation of regression functions with errors in variable

被引:6
|
作者
Koo, JY [1 ]
Lee, KW [1 ]
机构
[1] Hallym Univ, Dept Stat, Kangwon Do 200702, South Korea
关键词
characteristic function; deconvolution; Fourier transform; reproducing line property; rate of convergence;
D O I
10.1016/S0167-7152(98)00098-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes a new B-spline method for nonparametric regression function estimation which can be applied to the case even when the covariate is contaminated with noise. A property of B-splines, reproducing line property, is crucial in the construction of B-spline estimators for regression function. To account for errors in covariate, deconvolution is involved in the construction of B-spline estimators. It is shown that the B-spline estimators achieve the optimal rate of convergence which depends on the tail behavior of the characteristic function of the error distribution. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:57 / 66
页数:10
相关论文
共 50 条
  • [41] Adaptive Nonparametric Density Estimation with B-Spline Bases
    Zhao, Yanchun
    Zhang, Mengzhu
    Ni, Qian
    Wang, Xuhui
    [J]. MATHEMATICS, 2023, 11 (02)
  • [42] ON B-SPLINE M-ESTIMATORS IN A SEMIPARAMETRIC REGRESSION MODEL
    SHI Peide (Department of Probability and Statistics
    [J]. Journal of Systems Science & Complexity, 1994, (03) : 270 - 281
  • [43] Exact penalty method for knot selection of B-spline regression
    Shotaro Yagishita
    Jun-ya Gotoh
    [J]. Japan Journal of Industrial and Applied Mathematics, 2024, 41 : 1033 - 1059
  • [44] LEVY ADAPTIVE B-SPLINE REGRESSION VIA OVERCOMPLETE SYSTEMS
    Park, Sewon
    Oh, Hee-Seok
    Lee, Jaeyong
    [J]. STATISTICA SINICA, 2023, 33 (04) : 2715 - 2737
  • [45] B-SPLINE CHANNEL ESTIMATION FOR MULTIUSER LTE UPLINK
    Zakharov, Y.
    Zheng, D.
    [J]. 2015 IEEE CHINA SUMMIT & INTERNATIONAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING, 2015, : 908 - 912
  • [46] MULTIVARIATE SPLINE FUNCTIONS, B-SPLINE BASES AND POLYNOMIAL INTERPOLATIONS .2.
    HAKOPIAN, H
    [J]. STUDIA MATHEMATICA, 1984, 79 (01) : 91 - 102
  • [47] Data fitting by spline functions using the biorthonormal basis of the B-spline basis
    Haruki, R
    Horiuchi, T
    [J]. 15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS: IMAGE, SPEECH AND SIGNAL PROCESSING, 2000, : 270 - 273
  • [48] Exact penalty method for knot selection of B-spline regression
    Yagishita, Shotaro
    Gotoh, Jun-ya
    [J]. JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2024, 41 (02) : 1033 - 1059
  • [49] Bridging the gap between B-spline and polynomial regression model
    Satoh, K
    Yanagihara, H
    Ohtaki, M
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2003, 32 (01) : 179 - 190
  • [50] A relative survival regression model using B-spline functions to model non-proportional hazards
    Giorgi, R
    Abrahamowicz, M
    Quantin, C
    Bolard, P
    Esteve, J
    Gouvernet, J
    Faivre, J
    [J]. STATISTICS IN MEDICINE, 2003, 22 (17) : 2767 - 2784