Weighted Hardy Space Estimates for Commutators of Calderon-Zygmund Operators

被引:12
|
作者
Duong Quoc Huy [1 ]
Luong Dang Ky [2 ]
机构
[1] Tay Nguyen Univ, Dept Nat Sci & Technol, 567 Le Duan, Buon Ma Thuot, Dak Lak, Vietnam
[2] Quy Nhon Univ, Dept Educ, 170 An Duong Vuong, Quy Nhon, Binh Dinh, Vietnam
关键词
Calderon-Zygmund operator; Commutator; Muckenhoupt weight; BMO space; Hardy space; BOUNDEDNESS;
D O I
10.1007/s10013-020-00406-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let delta is an element of (0,1] and T be a delta-Calderon-Zygmund operator. Let p is an element of (0,1] be such that p(1 + delta/n) > 1, and assume that w belongs to the Muckenhoupt weight class A(p(1+delta/n)) (R-n) with the property integral(Rn) w(x)/(1+vertical bar x vertical bar)(np) dx < infinity. When b is an element of BMO(R-n), it is well-know that the commutator [b, T] is not bounded from H-p(R-n) into L-p(R-n) if b is not a constant function. In this paper, we find a proper subspace BMOw,p(R-n) of BMO(R-n) such that, if b is an element of BMOw,p(R-n), then [b, T] is bounded from the weighted Hardy space H-w(p) (R-n) into the weighted Lebesgue space L-w(p)(R-n). Conversely, if b is an element of BMO(R-n) and the commutators {[b, R-j]}(j=1)(n) of the classical Riesz transforms are bounded from H-w(p) (R-n) into L-w(p)(R-n), then b is an element of BMOw,p(R-n).
引用
收藏
页码:1065 / 1077
页数:13
相关论文
共 50 条
  • [21] STRONGLY SINGULAR CALDERON-ZYGMUND OPERATORS AND THEIR COMMUTATORS
    Lin, Yan
    Lu, Shanzhen
    [J]. JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2008, 1 (01): : 31 - 49
  • [22] Calderon-Zygmund Operators and Commutators in Spaces of Homogeneous Type: Weighted Inequalities
    Anderson, T. C.
    Damian, W.
    [J]. ANALYSIS MATHEMATICA, 2022, 48 (04) : 939 - 959
  • [23] Strongly singular Calderon-Zygmund operators and commutators on weighted Morrey spaces
    Lin, Yan
    Sun, Guofeng
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [24] Bilinear Decompositions and Commutators of Calderon-Zygmund Operators
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    [J]. REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 423 - 452
  • [25] Calderon-Zygmund Operators and Commutators on Weak Musielak-Orlicz Hardy Spaces
    Wang, Xiao
    Sun, Wenchang
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2023, 49 (02)
  • [26] WEIGHTED ESTIMATES WITH GENERAL WEIGHTS FOR MULTILINEAR CALDERON-ZYGMUND OPERATORS
    Hu Guoen
    [J]. ACTA MATHEMATICA SCIENTIA, 2012, 32 (04) : 1529 - 1544
  • [27] The Boundedness for Commutators of Anisotropic Calderon-Zygmund Operators
    Li, Jinxia
    Li, Baode
    He, Jianxun
    [J]. ACTA MATHEMATICA SCIENTIA, 2020, 40 (01) : 45 - 58
  • [28] θ-type Calderon-Zygmund Operators and Commutators in Variable Exponents Herz space
    Yang, Yanqi
    Tao, Shuangping
    [J]. OPEN MATHEMATICS, 2018, 16 : 1607 - 1620
  • [29] THE BOUNDEDNESS OF MULTILINEAR CALDERON-ZYGMUND OPERATORS ON WEIGHTED AND VARIABLE HARDY SPACES
    Cruz-Uribe, David
    Moen, Kabe
    Hanh Van Nguyen
    [J]. PUBLICACIONS MATEMATIQUES, 2019, 63 (02) : 679 - 713
  • [30] CALDERON-ZYGMUND OPERATORS AND UNCONDITIONAL BASES OF WEIGHTED HARDY-SPACES
    GARCIACUERVA, J
    KAZARIAN, KS
    [J]. STUDIA MATHEMATICA, 1994, 109 (03) : 255 - 276