Collaborative weighted multi-view feature extraction

被引:11
|
作者
Zhang, Jinxin [1 ]
Zhang, Peng [2 ]
Liu, Liming [3 ]
Deng, Naiyang [2 ]
Jing, Ling [2 ]
机构
[1] China Agr Univ, Coll Informat & Elect Engn, Beijing 100083, Peoples R China
[2] China Agr Univ, Coll Sci, Beijing 100083, Peoples R China
[3] Capital Univ Econ & Business, Sch Stat, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view; Feature extraction; Local collaborative representative; Jensen Shannon divergence; CANONICAL CORRELATION-ANALYSIS; REPRESENTATION; REDUCTION; SPARSE;
D O I
10.1016/j.engappai.2020.103527
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Most of the current multi-view feature extraction methods mainly consider the consistency and complementary information between multi-view samples, therefore have some drawbacks. They ignore the manifold structure of the single-view itself, and also ignore the differences among the similarities between any two views when the number of views is greater than two, because of assigning the same weight to them. In this paper, we propose a novel multi-view feature extraction method termed as collaborative weighted multi-view feature extraction or CWMvFE. Here the local collaborative representative (LCR) method is utilized to preserve the local correlation in between-view and within-view respectively. Furthermore, it realizes that less similar view pairs should share more consistency and complementary information, where Jensen Shannon divergence is used to reflect the similarity between different view pairs. Therefore, the proposed CWMvFE not only preserves the local correlation in multi-view, including local correlation in both between-view and within-view, but also explores the differences in similarities between different view pairs. Experiments on four image datasets demonstrate that CWMvFE has better performance than other related methods.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [21] Adaptive Collaborative Similarity Learning for Unsupervised Multi-view Feature Selection
    Dong, Xiao
    Zhu, Lei
    Song, Xuemeng
    Li, Jingjing
    Cheng, Zhiyong
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2064 - 2070
  • [22] Collaborative and Discriminative Subspace Learning for unsupervised multi-view feature selection
    Wu, Jian-Sheng
    Li, Yanlan
    Gong, Jun-Xiao
    Min, Weidong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [23] Multi-view Multi-task Feature Extraction for Web Image Classification
    Zuo, Zhiqiang
    Luo, Yong
    Tao, Dacheng
    Xu, Chao
    PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, : 1137 - 1140
  • [24] Radar target precession feature extraction based on multi-view fusion
    Tang, Chuanzi
    Ren, Hongmei
    Xiao, Zhihe
    Wang, Xiaohong
    IEEE 12TH INT CONF UBIQUITOUS INTELLIGENCE & COMP/IEEE 12TH INT CONF ADV & TRUSTED COMP/IEEE 15TH INT CONF SCALABLE COMP & COMMUN/IEEE INT CONF CLOUD & BIG DATA COMP/IEEE INT CONF INTERNET PEOPLE AND ASSOCIATED SYMPOSIA/WORKSHOPS, 2015, : 1617 - 1620
  • [25] Feature Extraction and Representation for Distributed Multi-View Human Action Recognition
    Luo, Jiajia
    Wang, Wei
    Qi, Hairong
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2013, 3 (02) : 145 - 154
  • [26] Structured sparse multi-view feature selection based on weighted hinge loss
    Nan Wang
    Yiming Xue
    Qiang Lin
    Ping Zhong
    Multimedia Tools and Applications, 2019, 78 : 15455 - 15481
  • [27] Structured sparse multi-view feature selection based on weighted hinge loss
    Wang, Nan
    Xue, Yiming
    Lin, Qiang
    Zhong, Ping
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (11) : 15455 - 15481
  • [28] Adaptive Collaborative Soft Label Learning for Unsupervised Multi-View Feature Selection
    Shi, Dan
    Zhu, Lei
    Dong, Xiao
    Song, Xuemeng
    Li, Jingjing
    Cheng, Zhiyong
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2023, 17 (08)
  • [29] Multi-view Clustering With Weighted Anchors
    Liu S.-Y.
    Wang S.-W.
    Tang C.
    Zhou S.-H.
    Wang S.-Q.
    Liu X.-W.
    Zidonghua Xuebao/Acta Automatica Sinica, 2024, 50 (06): : 1160 - 1170
  • [30] Adaptive Weighted Multi-View Clustering
    Liu, Shuo Shuo
    Lin, Lin
    CONFERENCE ON HEALTH, INFERENCE, AND LEARNING, VOL 209, 2023, 209 : 19 - 36