Learning Executable Semantic Parsers for Natural Language Understanding

被引:63
|
作者
Liang, Percy [1 ]
机构
[1] Stanford Univ, Comp Sci, Stanford, CA 94305 USA
关键词
D O I
10.1145/2866568
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A LONG-STANDING GOAL of artificial intelligence (AI) is to build systems capable of understanding natural language. To focus the notion of "understanding" a bit, let us say the system must produce an appropriate action upon receiving an input utterance from a human.
引用
收藏
页码:68 / 76
页数:9
相关论文
共 50 条
  • [41] Automatic Generation of Natural Language Parsers from Declarative Specifications
    Gomez-Rodriguez, Carlos
    Vilares, Jesus
    Alonso, Miguel A.
    [J]. STAIRS 2006, 2006, 142 : 259 - +
  • [42] Towards a Framework for Writing Executable Natural Language Rules
    Barmpis, Konstantinos
    Kolovos, Dimitrios
    Hingorani, Justin
    [J]. MODELLING FOUNDATIONS AND APPLICATIONS (ECMFA 2018), 2018, 10890 : 251 - 263
  • [43] A semi-supervised learning method for semantic modeling in language understanding
    Ortega, L.
    Galiano, I.
    Hurtado, L. F.
    Sanchis, E.
    Segarra, E.
    [J]. PROCESAMIENTO DEL LENGUAJE NATURAL, 2010, (45): : 199 - 205
  • [44] Neural Symbolic Machines: Learning Semantic Parsers on Freebase with Weak Supervision
    Liang, Chen
    Berant, Jonathan
    Quoc Le
    Forbus, Kenneth D.
    Lao, Ni
    [J]. PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, 2017, : 23 - 33
  • [45] Learning Semantic Hierarchy with Distributed Representations for Unsupervised Spoken Language Understanding
    Chen, Yun-Nung
    Wang, William Yang
    Rudnicky, Alexander I.
    [J]. 16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 1869 - 1873
  • [46] Combining LAPIS and WordNet for the learning of LR parsers with optimal semantic constraints
    Kazakov, D
    [J]. INDUCTIVE LOGIC PROGRAMMING, 1999, 1634 : 140 - 151
  • [47] EXECUTABLE SEMANTIC DESCRIPTIONS
    WATT, DA
    [J]. SOFTWARE-PRACTICE & EXPERIENCE, 1986, 16 (01): : 13 - 43
  • [48] Total Recall: a Customized Continual Learning Method for Neural Semantic Parsers
    Li, Zhuang
    Qu, Lizhen
    Haffari, Gholamreza
    [J]. 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 3816 - 3831
  • [49] Learning Uniform Semantic Features for Natural Language and Programming Language Globally, Locally and Sequentially
    Zhang, Yudong
    Zheng, Wenhao
    Li, Ming
    [J]. THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 5845 - 5852
  • [50] On Robustness of Neural Semantic Parsers
    Huang, Shuo
    Li, Zhuang
    Qu, Lizhen
    Pan, Lei
    [J]. 16TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EACL 2021), 2021, : 3333 - 3342