Non-commutative flux representation for loop quantum gravity

被引:54
|
作者
Baratin, A. [1 ]
Dittrich, B. [2 ]
Oriti, D. [2 ]
Tambornino, J. [3 ]
机构
[1] Univ Paris 11, CNRS, Phys Theor Lab, CPHT Ecole Polytech,IPhT Saclay,LPT Orsay,UMR 862, F-91405 Orsay, France
[2] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14467 Golm, Germany
[3] ENS Lyon, CNRS, Phys Lab, UMR 5672, F-69007 Lyon, France
关键词
SPIN FOAM MODELS; GEOMETRY; VERTEX; SPACE;
D O I
10.1088/0264-9381/28/17/175011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Hilbert space of loop quantum gravity is usually described in terms of cylindrical functionals of the gauge connection, the electric fluxes acting as non-commuting derivation operators. It has long been believed that this non-commutativity prevents a dual flux (or triad) representation of loop quantum gravity to exist. We show here, instead, that such a representation can be explicitly defined, by means of a non-commutative Fourier transform defined on the loop gravity state space. In this dual representation, flux operators act by *-multiplication and holonomy operators act by translation. We describe the gauge invariant dual states and discuss their geometrical meaning. Finally, we apply the construction to the simpler case of a U(1) gauge group and compare the resulting flux representation with the triad representation used in loop quantum cosmology.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Quantum tunneling from Schwarzschild black hole in non-commutative gauge theory of gravity
    Touati, Abdellah
    Slimane, Zaim
    [J]. PHYSICS LETTERS B, 2024, 848
  • [32] Loop Representation of Quantum Gravity
    Adrian P. C. Lim
    [J]. Annales Henri Poincaré, 2024, 25 : 1911 - 1956
  • [33] Loop Representation of Quantum Gravity
    Lim, Adrian P. C.
    [J]. ANNALES HENRI POINCARE, 2024, 25 (03): : 1911 - 1956
  • [34] A Wheeler-DeWitt Non-Commutative Quantum Approach to the Branch-Cut Gravity
    Bodmann, Benno
    Hadjimichef, Dimiter
    Hess, Peter Otto
    Pacheco, Jose de Freitas
    Weber, Fridolin
    Razeira, Moises
    Degrazia, Gervasio Annes
    Marzola, Marcelo
    Vasconcellos, Cesar A. Zen
    [J]. UNIVERSE, 2023, 9 (10)
  • [35] Towards non-commutative topological gauge theory of gravity
    Garcia-Compeán, H
    Obregón, O
    Ramirez, C
    Sabido, M
    [J]. DEVELOPMENTS IN MATHEMATICAL AND EXPERIMENTAL PHYSICS, VOL A: COSMOLOGY AND GRAVITATION, 2002, : 71 - 78
  • [36] Stability of a non-commutative Jackiw-Teitelboim gravity
    Vassilevich, D. V.
    Fresneda, R.
    Gitman, D. M.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2006, 47 (01): : 235 - 240
  • [37] Gravity coupled with matter and the foundation of non-commutative geometry
    Connes, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 182 (01) : 155 - 176
  • [38] Geodesic equation in non-commutative gauge theory of gravity
    Touati, Abdellah
    Zaim, Slimane
    [J]. CHINESE PHYSICS C, 2022, 46 (10)
  • [39] Geodesic equation in non-commutative gauge theory of gravity
    Abdellah Touati
    Slimane Zaim
    [J]. Chinese Physics C, 2022, 46 (10) : 197 - 210
  • [40] Non-commutative automorphisms of bounded non-commutative domains
    McCarthy, John E.
    Timoney, Richard M.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (05) : 1037 - 1045