Constructing Entanglement Witnesses for States in Infinite-Dimensional Bipartite Quantum Systems

被引:10
|
作者
Hou, Jinchuan [2 ,3 ]
Guo, Yu [1 ,2 ]
机构
[1] Shanxi Datong Univ, Dept Math, Datong 037009, Peoples R China
[2] Shanxi Univ, Dept Math, Taiyuan 030006, Peoples R China
[3] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum state; Bipartite composite quantum systems; Entanglement; Entanglement witnesses; Infinite-dimensional Hilbert spaces; CROSS-NORM CRITERION; SEPARABILITY CRITERION; DENSITY-MATRICES;
D O I
10.1007/s10773-010-0534-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, two approaches of constructing entanglement witnesses for finite- or infinite-dimensional bipartite quantum systems are presented. Let H (A) and H (B) be complex Hilbert spaces and {E (k) } and {F (k) } be sequences of self-adjoint Hilbert-Schmidt operators on H (A) and H (B) , respectively, such that Tr(E-k(+) F-tau) = delta(k tau). Then W = I - Sigma(k) E-k circle times F-k is an entanglement witness on H-A circle times H-B if W not greater than or equal to 0. If rho is an entangled state and tau (0) is the nearest separable state to rho under the Hilbert-Schmidt norm, then W=c (0) I+tau (0)-rho with c (0)=Tr[tau (0)(rho-tau (0))] is an entanglement witness.
引用
收藏
页码:1245 / 1254
页数:10
相关论文
共 50 条