Estimated estimating equations:: semiparametric inference for clustered and longitudinal data

被引:26
|
作者
Chiou, JM
Müller, HG
机构
[1] Univ Calif Davis, Dept Stat, Davis, CA 95616 USA
[2] Acad Sinica, Taipei 115, Taiwan
关键词
diagnostics; generalized estimating equations; generalized linear mixed model; link selection; marginal model; quasi-likelihood; repeated measurements; semiparametric regression; smoothing; variance-covariance function;
D O I
10.1111/j.1467-9868.2005.00514.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a flexible marginal modelling approach for statistical inference for clustered and longitudinal data under minimal assumptions. This estimated estimating equations approach is semiparametric and the proposed models are fitted by quasi-likelihood regression, where the unknown marginal means are a function of the fixed effects linear predictor with unknown smooth link, and variance-covariance is an unknown smooth function of the marginal means. We propose to estimate the nonparametric link and variance-covariance functions via smoothing methods, whereas the regression parameters are obtained via the estimated estimating equations. These are score equations that contain nonparametric function estimates. The proposed estimated estimating equations approach is motivated by its flexibility and easy implementation. Moreover, if data follow a generalized linear mixed model, with either a specified or an unspecified distribution of random effects and link function, the model proposed emerges as the corresponding marginal (population-average) version and can be used to obtain inference for the fixed effects in the underlying generalized linear mixed model, without the need to specify any other components of this generalized linear mixed model. Among marginal models, the estimated estimating equations approach provides a flexible alternative to modelling with generalized estimating equations. Applications of estimated estimating equations include diagnostics and link selection. The asymptotic distribution of the proposed estimators for the model parameters is derived, enabling statistical inference. Practical illustrations include Poisson modelling of repeated epileptic seizure counts and simulations for clustered binomial responses.
引用
收藏
页码:531 / 553
页数:23
相关论文
共 50 条
  • [11] Estimating Equations Inference With Missing Data
    Zhou, Yong
    Wan, Alan T. K.
    Wang, Xiaojing
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (483) : 1187 - 1199
  • [12] Semiparametric regression for clustered data
    Lin, XH
    Carroll, RJ
    [J]. BIOMETRIKA, 2001, 88 (04) : 1179 - 1185
  • [13] Analysis of clustered data: A combined estimating equations approach
    Stoner, JA
    Leroux, BG
    [J]. BIOMETRIKA, 2002, 89 (03) : 567 - 578
  • [14] Semiparametric empirical likelihood inference with estimating equations under density ratio models
    Yuan, Meng
    Li, Pengfei
    Wu, Changbao
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (02): : 5321 - 5377
  • [15] Generalized empirical likelihood inference in semiparametric regression model for longitudinal data
    Gao Rong Li
    Ping Tian
    Liu Gen Xue
    [J]. Acta Mathematica Sinica, English Series, 2008, 24
  • [16] Generalized Empirical Likelihood Inference in Semiparametric Regression Model for Longitudinal Data
    Gao Rong LI College of Applied Sciences
    [J]. Acta Mathematica Sinica,English Series, 2008, 24 (12) : 2029 - 2040
  • [17] Generalized Empirical Likelihood Inference in Semiparametric Regression Model for Longitudinal Data
    Li, Gao Rong
    Tian, Ping
    Xue, Liu Gen
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (12) : 2029 - 2040
  • [18] Inference for clustered data
    Lee, Chang Hyung
    Steigerwald, Douglas G.
    [J]. STATA JOURNAL, 2018, 18 (02): : 447 - 460
  • [19] A Generalized Estimating Equations Approach for Modeling Spatially Clustered Data
    Lipi, Nasrin
    Alam, Mohammad Samsul
    Hossain, Syed Shahadat
    [J]. AUSTRIAN JOURNAL OF STATISTICS, 2021, 50 (04) : 36 - 52
  • [20] Efficient Semiparametric Marginal Estimation for the Partially Linear Additive Model for Longitudinal/Clustered Data
    Carroll, Raymond
    Maity, Arnab
    Mammen, Enno
    Yu, Kyusang
    [J]. STATISTICS IN BIOSCIENCES, 2009, 1 (01) : 10 - 31