Bayesian model comparison for rare-variant association studies

被引:2
|
作者
Venkataraman, Guhan Ram [1 ]
DeBoever, Christopher [1 ]
Tanigawa, Yosuke [1 ]
Aguirre, Matthew [1 ]
Ioannidis, Alexander G. [1 ]
Mostafavi, Hakhamanesh [1 ]
Spencer, Chris C. A. [2 ]
Poterba, Timothy [3 ]
Bustamante, Carlos D. [1 ,4 ]
Daly, Mark J. [3 ,5 ]
Pirinen, Matti [6 ,7 ,8 ]
Rivas, Manuel A. [1 ]
机构
[1] Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USA
[2] Genom Plc, Oxford OX11JD, England
[3] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[4] Stanford Univ, Dept Genet, Stanford, CA 94305 USA
[5] Massachusetts Gen Hosp, Analyt & Translat Genet Unit, Boston, MA 02114 USA
[6] Univ Helsinki, Inst Mol Med Finland, Helsinki 00014, Finland
[7] Univ Helsinki, Dept Publ Hlth, Helsinki 00014, Finland
[8] Univ Helsinki, Dept Math & Stat, Helsinki 00014, Finland
关键词
GENOME-WIDE ASSOCIATION; OF-FUNCTION MUTATIONS; RISK; METAANALYSIS; TRAITS; APOC3; TRIGLYCERIDES; CHOLESTEROL; LIPOPROTEIN; GENETICS;
D O I
10.1016/j.ajhg.2021.11.005
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Whole-genome sequencing studies applied to large populations or biobanks with extensive phenotyping raise new analytic challenges. The need to consider many variants at a locus or group of genes simultaneously and the potential to study many correlated phenotypes with shared genetic architecture provide opportunities for discovery not addressed by the traditional one variant, one phenotype association study. Here, we introduce a Bayesian model comparison approach called MRP (multiple rare variants and phenotypes) for rare-variant association studies that considers correlation, scale, and direction of genetic effects across a group of genetic variants, phenotypes, and studies, requiring only summary statistic data. We apply our method to exome sequencing data (n = 184,698) across 2,019 traits from the UK Biobank, aggregating signals in genes. MRP demonstrates an ability to recover signals such as associations between PCSK9 and LDL cholesterol levels. We additionally find MRP effective in conducting meta-analyses in exome data. Non-biomarker findings include associations between MC1R and red hair color and skin color, IL17RA and monocyte count, and IQGAP2 and mean platelet volume. Finally, we apply MRP in a multi-phenotype setting; after clustering the 35 biomarker phenotypes based on genetic correlation estimates, we find that joint analysis of these phenotypes results in substantial power gains for gene-trait associations, such as in TNFRSFI3B in one of the clusters containing diabetes- and lipid-related traits. Overall, we show that the MRP model comparison approach improves upon useful features from widely used meta-analysis approaches for rare-variant association analyses and prioritizes protective modifiers of disease risk.
引用
收藏
页码:2354 / 2367
页数:14
相关论文
共 50 条
  • [41] Beyond Rare-Variant Association Testing: Pinpointing Rare Causal Variants in Case-Control Sequencing Study
    Wan-Yu Lin
    [J]. Scientific Reports, 6
  • [42] An allelic-series rare-variant association test for candidate-gene discovery
    McCaw, Zachary R.
    O'Dushlaine, Colm
    Somineni, Hari
    Bereket, Michael
    Klein, Christoph
    Karaletsos, Theofanis
    Casale, Francesco Paolo
    Koller, Daphne
    Soare, Thomas W.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2023, 110 (08) : 1330 - 1342
  • [43] Multi-trait analysis of rare-variant association summary statistics using MTAR
    Luo, Lan
    Shen, Judong
    Zhang, Hong
    Chhibber, Aparna
    Mehrotra, Devan, V
    Tang, Zheng-Zheng
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [44] Bayesian Collapsing Model for Rare Variant Detection
    He, Liang
    Ripatti, Samuli
    Pitkaniemi, Janne
    [J]. GENETIC EPIDEMIOLOGY, 2012, 36 (07) : 763 - 763
  • [45] Fast kernel-based rare-variant association tests integrating variant annotations from deep learning
    Konigorski, Stefan
    Monti, Remo
    Rautenstrauch, Pia
    Lippert, Christoph
    [J]. GENETIC EPIDEMIOLOGY, 2020, 44 (05) : 495 - 495
  • [46] Beyond Rare-Variant Association Testing: Pinpointing Rare Causal Variants in Case-Control Sequencing Study
    Lin, Wan-Yu
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [47] A rare-variant test for high-dimensional data
    Kaakinen, Marika
    Magi, Reedik
    Fischer, Krista
    Heikkinen, Jani
    Jarvelin, Marjo-Riitta
    Morris, Andrew P.
    Prokopenko, Inga
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2017, 25 (08) : 988 - 994
  • [48] Challenges and opportunities associated with rare-variant pharmacogenomics br
    Zhou, Yitian
    Tremmel, Roman
    Schaeffeler, Elke
    Schwab, Matthias
    Lauschke, Volker M.
    [J]. TRENDS IN PHARMACOLOGICAL SCIENCES, 2022, 43 (10) : 852 - 865
  • [49] gsSKAT: Rapid gene set analysis and multiple testing correction for rare-variant association studies using weighted linear kernels
    Larson, Nicholas B.
    McDonnell, Shannon
    Albright, Lisa Cannon
    Teerlink, Craig
    Stanford, Janet
    Ostrander, Elaine A.
    Isaacs, William B.
    Xu, Jianfeng
    Cooney, Kathleen A.
    Lange, Ethan
    Schleutker, Johanna
    Carpten, John D.
    Powell, Isaac
    Bailey-Wilson, Joan E.
    Cussenot, Olivier
    Cancel-Tassin, Geraldine
    Giles, Graham G.
    MacInnis, Robert J.
    Maier, Christiane
    Whittemore, Alice S.
    Hsieh, Chih-Lin
    Wiklund, Fredrik
    Catolona, William J.
    Foulkes, William
    Mandal, Diptasri
    Eeles, Rosalind
    Kote-Jarai, Zsofia
    Ackerman, Michael J.
    Olson, Timothy M.
    Klein, Christopher J.
    Thibodeau, Stephen N.
    Schaid, Daniel J.
    [J]. GENETIC EPIDEMIOLOGY, 2017, 41 (04) : 297 - 308
  • [50] A W-test collapsing method for rare-variant association testing in exome sequencing data
    Sun, Rui
    Weng, Haoyi
    Hu, Inchi
    Guo, Junfeng
    Wu, William K. K.
    Zee, Benny Chung-Ying
    Wang, Maggie Haitian
    [J]. GENETIC EPIDEMIOLOGY, 2016, 40 (07) : 591 - 596