THE TITS BUILDING AND AN APPLICATION TO ABSTRACT CENTRAL EXTENSIONS OF p-ADIC ALGEBRAIC GROUPS BY FINITE p-GROUPS

被引:0
|
作者
Sury, B. [1 ]
机构
[1] Indian Stat Inst, Stat Math Unit, Bangalore 560059, Karnataka, India
关键词
Tits building; p-adic algebraic groups; COHOMOLOGY; DISCRETE; CORNERS;
D O I
10.1090/S0002-9939-2010-10641-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a connected, semisimple, simply connected algebraic group G defined and isotropic over a field k, the corresponding Tits building is used to study central extensions of the abstract group G(k). When k is a non-Archimedean local field and A is a finite, abelian p-group where p is the characteristic of the residue field of k, then with G of k-rank at least 2, we show that the group H-2(G(k), A) of abstract central extensions injects into a finite direct sum of H-2(H(k), A) for certain semisimple k-subgroups H of smaller k-ranks. On the way, we prove some results which are valid over a general field k; for instance, we prove that the analogue of the Steinberg module for G(k) has no nonzero G(k)-invariants.
引用
收藏
页码:2033 / 2044
页数:12
相关论文
共 50 条
  • [21] Quantum p-adic spaces and quantum p-adic groups
    Soibelman, Yan
    IN MEMORY OF ALEXANDER REZNIKOV, 2008, 265 : 697 - 719
  • [22] Signed Selmer groups over p-adic Lie extensions
    Lei, Antonio
    Zerbes, Sarah Livia
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2012, 24 (02): : 377 - 403
  • [23] Selmer groups over p-adic Lie extensions I
    Zerbes, SL
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 70 : 586 - 608
  • [24] Invariant measures on p-adic Lie groups: the p-adic quaternion algebra and the Haar integral on the p-adic rotation groups
    Aniello, Paolo
    L'Innocente, Sonia
    Mancini, Stefano
    Parisi, Vincenzo
    Svampa, Ilaria
    Winter, Andreas
    LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (03)
  • [25] On the structure of Selmer groups over p-adic lie extensions
    Ochi, Y
    Venjakob, O
    JOURNAL OF ALGEBRAIC GEOMETRY, 2002, 11 (03) : 547 - 580
  • [26] Beta extensions and cuspidal types for p-adic spin groups
    Dinh Van Ngo
    manuscripta mathematica, 2017, 152 : 513 - 531
  • [27] p-Adic Hurwitz groups
    Dzambic, Amir
    Jones, Gareth A.
    JOURNAL OF ALGEBRA, 2013, 379 : 179 - 207
  • [28] z-Finite distributions on p-adic groups
    Aizenbud, Avraham
    Gourevitch, Dmitry
    Sayag, Eitan
    ADVANCES IN MATHEMATICS, 2015, 285 : 1376 - 1414
  • [29] ON THE STRUCTURE OF SELMER GROUPS OF Λ-ADIC DEFORMATIONS OVER p-ADIC LIE EXTENSIONS
    Shekhar, Sudhanshu
    Sujatha, R.
    DOCUMENTA MATHEMATICA, 2012, 17 : 573 - 606
  • [30] CYCLIC EXTENSIONS OF FREE PRO-P GROUPS AND P-ADIC MODULES
    Porto, Anderson L. P.
    Zalesskii, Pavel A.
    MATHEMATICAL RESEARCH LETTERS, 2013, 20 (03) : 537 - 545