Experimental Investigation of the Condensation Heat Transfer Coefficient of R134a inside Horizontal Smooth and Micro-Fin Tubes

被引:4
|
作者
Li, Qingpu [1 ]
Tao, Leren [1 ]
Li, Lei [1 ]
Hu, Yongpan [1 ]
Wu, Shengli [1 ]
机构
[1] Univ Shanghai Sci & Technol, Inst Refrigerat & Cryogen, Shanghai 200093, Peoples R China
关键词
condensation; heat transfer coefficient; correlation; dimensionless parameter; turbulence effect; PRESSURE-DROP; 2-PHASE FLOW; TRANSFER MODEL; REFRIGERANTS; HERRINGBONE; PATTERN; EVAPORATION; PREDICTION; EXCHANGER; REGIMES;
D O I
10.3390/en10091280
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The condensation heat transfer coefficient of R134a was experimentally studied inside two smooth and four micro-fin tubes. The working conditions and structural parameters of the test tubes were selected as the influencing factors, and the experiment was conducted under mass velocities of 400-1100 kg.m 2.s(-1), condensation temperatures of 35-45 degrees C and water-testing Reynolds numbers of 8000-22,000, with an inlet superheat of 1-2 degrees C and outlet subcooling of 1-2 degrees C at the test section for the refrigerant. Experimental results indicate that the heat transfer coefficient increases with increasing mass velocity and decreasing condensation temperature and water-testing Reynolds number. The heat transfer coefficient of the micro-fin tube with a helix angle of 28 degrees is the highest and that of smooth tube is the lowest for test tubes with the same inner diameter. Tube diameter has a small influence on the heat transfer coefficient for the smooth tubes while the heat transfer coefficient increases with decreasing tube diameter for the micro-fin tubes. The heat transfer coefficient inside the test tube was compared with some well-known existing correlations, and results show that correlations by Cavallini et al., Thome et al., Shah and Akers et al. can estimate the experimental data with mean absolute deviation of less than 30%, and correlations of Dobson and Chato et al. and Jung et al. cannot be used to capture the heat transfer coefficient with mean absolute deviations of 140.18% and 146.23%, respectively. While the Miyara et al. correlation overestimates the heat transfer coefficient, correlations of Cavallini et al., Koyama et al. and Oliver et al. all underestimate the experimental data for the micro-fin tube. Their deviations are from 25 to 55% for micro-fin tubes 3 and 4, while their deviations keep to within 30% for micro-fin tubes 5 and 6. Finally, to improve the correlation prediction accuracy, a dimensionless parameter was introduced to the correlations of Dobson and Chato et al. and Jung et al., and correlations of Cavallini et al., Koyama et al. and Oliver et al. were modified by enhancing the turbulence effect. The prediction accuracy of all modified correlations can be controlled to within 30%.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Experimental study of R134A condensation heat transfer inside the horizontal micro-fin tubes
    Chen, Q
    Amano, RS
    Xin, MD
    [J]. HEAT AND MASS TRANSFER, 2005, 41 (09) : 785 - 791
  • [2] Experimental study of R134A condensation heat transfer inside the horizontal micro-fin tubes
    Q. Chen
    R. S. Amano
    M. D. Xin
    [J]. Heat and Mass Transfer, 2005, 41 : 785 - 791
  • [3] Experimental study of R134a condensation heat transfer inside the horizontal micro-fin tubes
    Chen, QH
    Xin, MD
    Amano, RS
    [J]. ITHERM 2004, VOL 2, 2004, : 40 - 46
  • [4] Experimental study of condensation heat transfer of R134a inside the micro-fin tubes at high mass flux
    Li Qingpu
    Chen Guangming
    Wang Qin
    Tao Leren
    Xuan Yongmei
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 187
  • [5] Experimental investigation of the heat transfer of supercritical R134a in a horizontal micro-fin tube
    Wang, Dabiao
    Dai, Xiaoye
    Tian, Ran
    Shi, Lin
    [J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2019, 138 : 536 - 549
  • [6] EXPERIMENTAL INVESTIGATION OF EVAPORATION HEAT TRANSFER INSIDE HORIZONTAL MICRO-FIN TUBES
    Chen, Xu
    Mi, Pengfei
    Childs, Peter R. N.
    Sokolova, Ekaterina
    Li, Wei
    Yan, Yuying
    [J]. PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE, 2016, VOL 2, 2016,
  • [7] Heat transfer performance during condensation inside horizontal smooth, micro-fin and herringbone tubes
    Lambrechts, Adriaan
    Liebenberg, Leon
    Bergles, Arthur E.
    Meyer, Josua P.
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2006, 128 (07): : 691 - 700
  • [8] Experimental Study on Condensation of R134a Inside Horizontal Inner-Micro-Fin Tubes
    Chen, Qiwei
    Ouyang, Xinping
    [J]. PROGRESS IN POWER AND ELECTRICAL ENGINEERING, PTS 1 AND 2, 2012, 354-355 : 753 - 758
  • [9] Experimental Heat Transfer Coefficient and Pressure Drop during Condensation of R-134a and R-410A in Horizontal Micro-fin Tubes
    Singh, Sanjeev
    Kukreja, Rajeev
    [J]. INTERNATIONAL JOURNAL OF AIR-CONDITIONING AND REFRIGERATION, 2018, 26 (03)
  • [10] AN EXPERIMENTAL STUDY OF R134A CONDENSATION HEAT TRANSFER IN HORIZONTAL SMOOTH AND ENHANCED TUBES
    Guo, Yu
    Gu, Zong-bao
    Ayub, Zahid
    Li, Wei
    Ma, Xiang
    He, Yan
    Kukulka, David J.
    [J]. PROCEEDINGS OF THE ASME 2020 18TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS, AND MINICHANNELS (ICNMM2020), 2020,