Reversible hybrid sodium-CO2 batteries with low charging voltage and long-life

被引:92
|
作者
Xu, Changfan [1 ,2 ]
Zhang, Kaiwen [1 ]
Zhang, Da [1 ]
Chang, Shilei [1 ]
Liang, Feng [1 ,3 ]
Yan, Pengfei [4 ]
Yao, Yaochun [1 ]
Qu, Tao [1 ]
Zhan, Jing [2 ]
Ma, Wenhui [1 ]
Yang, Bing [1 ]
Dai, Yongnian [1 ]
Sun, Xueliang [5 ]
机构
[1] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Kunming 650093, Yunnan, Peoples R China
[2] Cent South Univ, Sch Met & Environm, Changsha 410083, Peoples R China
[3] Kunming Univ Sci & Technol, State Key Lab Complex Nonferrous Met Resources Cl, Kunming 650093, Yunnan, Peoples R China
[4] Beijing Univ Technol, Inst Microstruct & Properties Adv Mat, Beijing Key Lab Microstruct & Properties Solids, Beijing 100124, Peoples R China
[5] Univ Western Ontario, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Na-CO2; batteries; N-doped single wall carbon nanohorns; Aqueous catholyte; Low polarization; Good reversibility; WALLED CARBON NANOHORNS; CO2; REDUCTION; GRAPHENE; CATALYST; NANOPARTICLES; EFFICIENT; OXIDE; CELL;
D O I
10.1016/j.nanoen.2019.104318
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A reversible long-life hybrid Na-CO2 battery is proposed by using Na3Zr2Si2PO12 solid electrolyte as a separator, N-doped single-wall carbon nanohorns (N-SWCNH) as a catalyst and the saturated NaCl solution as an aqueous catholyte. The Na3Zr2Si2PO12 ceramic not only has high Na+ ion conductivity, but also prevents potential contamination from H2O and CO2 to sodium anode, and avoids the internal short-circuit touch of Na dendrite with cathode, improving the safety of the battery. Benefiting from N dopants, unique internal and interstitial nanoporous structures, N-SWCNH have large surface area for discharge products accumulation, offer substantial structural defect sites for CO2 adsorption and electron transfer, contributing to high catalytic activity and reversibility. Most importantly, the hybrid Na-CO2 battery with aqueous electrolyte facilitates the dissolution of the insulated discharge product, which overwhelmingly improves the discharge and charge reactions kinetics. Na-CO2 batteries exhibit a low charging voltage of 2.62 V and a small voltage gap of 0.49 V at a current density of 0.1 mA cm(-2), a superior discharge capacity of 2293 mAh.g(-1) at a current density of 0.2 mA cm(-2), a high round trip efficiency of similar to 68.7% after 300 cycles. In-situ Raman and ex-suit XRD analyses convincingly show that NaHCO3 and carbon are the main discharge products.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Nonaqueous electrolyte with dual-cations for high-voltage and long-life zinc batteries
    Dong, Yang
    Di, Shengli
    Zhang, Fangbo
    Bian, Xu
    Wang, Yuanyuan
    Xu, Jianzhong
    Wang, Liubin
    Cheng, Fangyi
    Zhang, Ning
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (06) : 3252 - 3261
  • [32] Engineering electron cloud density of phenazine for high-voltage and long-life alkaline batteries
    Xue, Xinhao
    Hu, Lintong
    Shi, Minjie
    Yan, Chao
    ENERGY STORAGE MATERIALS, 2024, 73
  • [33] Hierarchical Ti3C2Tx MXene/Carbon Nanotubes for Low Overpotential and Long-Life Li-CO2 Batteries
    Hu, Zhe
    Xie, Yaoyi
    Yu, Deshuang
    Liu, Qiannan
    Zhou, Limin
    Zhang, Kai
    Li, Peng
    Hu, Feng
    Li, Linlin
    Chou, Shulei
    Peng, Shengjie
    ACS NANO, 2021, 15 (05) : 8407 - 8417
  • [34] Long-life lithium-ion batteries realized by low-Ni, Co-free cathode chemistry
    Zhang, Rui
    Wang, Chunyang
    Zou, Peichao
    Lin, Ruoqian
    Ma, Lu
    Li, Tianyi
    Hwang, In-hui
    Xu, Wenqian
    Sun, Chengjun
    Trask, Steve
    Xin, Huolin L. L.
    NATURE ENERGY, 2023, 8 (07) : 695 - 702
  • [35] Bidirectional Interface Protection of a Concentrated Electrolyte, Enabling High-Voltage and Long-Life Aqueous Zn Hybrid-Ion Batteries
    Deng, Wenjun
    Li, Zhengang
    Chen, Yan
    Shen, Na
    Zhang, Man
    Yuan, Xinran
    Hu, Jun
    Zhu, Jinlin
    Huang, Chao
    Li, Chang
    Li, Rui
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (31) : 35864 - 35872
  • [36] A quinone electrode with reversible phase conversion for long-life rechargeable aqueous aluminum-metal batteries
    He, Jinjun
    Shi, Xin
    Wang, Chengsheng
    Zhang, Haozhe
    Liu, Xiaoqing
    Yang, Zujin
    Lu, Xihong
    CHEMICAL COMMUNICATIONS, 2021, 57 (56) : 6931 - 6934
  • [37] Long-life lithium-ion batteries realized by low-Ni, Co-free cathode chemistry
    Rui Zhang
    Chunyang Wang
    Peichao Zou
    Ruoqian Lin
    Lu Ma
    Tianyi Li
    In-hui Hwang
    Wenqian Xu
    Chengjun Sun
    Steve Trask
    Huolin L. Xin
    Nature Energy, 2023, 8 : 695 - 702
  • [38] Sustainable layered cathode with suppressed phase transition for long-life sodium-ion batteries
    Yonglin Tang
    Qinghua Zhang
    Wenhua Zuo
    Shiyuan Zhou
    Guifan Zeng
    Baodan Zhang
    Haitang Zhang
    Zhongyuan Huang
    Lirong Zheng
    Juping Xu
    Wen Yin
    Yongfu Qiu
    Yinguo Xiao
    Qiaobao Zhang
    Tiqing Zhao
    Hong-Gang Liao
    Inhui Hwang
    Cheng-Jun Sun
    Khalil Amine
    Qingsong Wang
    Yang Sun
    Gui-Liang Xu
    Lin Gu
    Yu Qiao
    Shi-Gang Sun
    Nature Sustainability, 2024, 7 : 348 - 359
  • [39] Na-Rich Prussian White Cathodes for Long-Life Sodium-Ion Batteries
    Shen, Zhilong
    Guo, Songhao
    Liu, Chunli
    Sun, Yunpo
    Chen, Zhen
    Tu, Jian
    Liu, Shuangyu
    Cheng, Jipeng
    Xie, Jian
    Cao, Gaoshao
    Zhao, Xinbing
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (12): : 16121 - 16129
  • [40] Sustainable layered cathode with suppressed phase transition for long-life sodium-ion batteries
    Tang, Yonglin
    Zhang, Qinghua
    Zuo, Wenhua
    Zhou, Shiyuan
    Zeng, Guifan
    Zhang, Baodan
    Zhang, Haitang
    Huang, Zhongyuan
    Zheng, Lirong
    Xu, Juping
    Yin, Wen
    Qiu, Yongfu
    Xiao, Yinguo
    Zhang, Qiaobao
    Zhao, Tiqing
    Liao, Hong-Gang
    Hwang, Inhui
    Sun, Cheng-Jun
    Amine, Khalil
    Wang, Qingsong
    Sun, Yang
    Xu, Gui-Liang
    Gu, Lin
    Qiao, Yu
    Sun, Shi-Gang
    NATURE SUSTAINABILITY, 2024, 7 (03) : 348 - 359