Homoclinic chaos and its organization in a nonlinear optics model

被引:12
|
作者
Pusuluri, Krishna [1 ]
Shilnikov, Andrey [1 ,2 ]
机构
[1] Georgia State Univ, Neurosci Inst, Petit Sci Ctr, 100 Piedmont Ave, Atlanta, GA 30303 USA
[2] Georgia State Univ, Dept Math & Stat, Petit Sci Ctr, 100 Piedmont Ave, Atlanta, GA 30303 USA
基金
俄罗斯科学基金会;
关键词
LASER; INSTABILITIES;
D O I
10.1103/PhysRevE.98.040202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We developed a powerful computational approach to elaborate on the onset mechanisms of deterministic chaos due to complex homoclinic bifurcations in diverse systems. Its core is the reduction of phase space dynamics to symbolic binary representations that lets one detect regions of simple and complex dynamics as well as fine organization structures of the latter in parameter space. Massively parallel simulations shorten the computational time to disclose highly detailed bifurcation diagrams to a few seconds.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Numerical approximation of homoclinic chaos
    Beyn, WJ
    Kleinkauf, JM
    NUMERICAL ALGORITHMS, 1997, 14 (1-3) : 25 - 53
  • [32] Homoclinic chaos in inverted pendula
    Verduzco, F
    Alvarez, J
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 4821 - 4822
  • [33] PROBABILISTIC APPROACH TO HOMOCLINIC CHAOS
    DAEMS, D
    NICOLIS, G
    JOURNAL OF STATISTICAL PHYSICS, 1994, 76 (5-6) : 1287 - 1305
  • [34] Symbolic Quest into Homoclinic Chaos
    Xing, Tingli
    Barrio, Roberto
    Shilnikov, Andrey
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (08):
  • [35] Homoclinic chaos in the dynamics of a general Bianchi type-IX model
    de Oliveira, HP
    de Almeida, AMO
    Soares, ID
    Tonini, EV
    PHYSICAL REVIEW D, 2002, 65 (08): : 835111 - 835119
  • [36] Experimental characterization of space-time chaos in nonlinear optics
    Pastur, L
    Bortolozzo, U
    Ramazza, PL
    EXPERIMENTAL CHAOS, 2003, 676 : 182 - 188
  • [37] HOMOCLINIC CLUSTERS AND CHAOS ASSOCIATED WITH A FOLDED NODE IN A STELLATE CELL MODEL
    Wechselberger, Martin
    Weckesser, Warren
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2009, 2 (04): : 829 - 850
  • [38] Observations of homoclinic chaos through alternating periodic-chaotic sequences in a nonlinear circuit
    Ma, LX
    Sun, HY
    Wang, L
    ACTA PHYSICA SINICA-OVERSEAS EDITION, 1996, 5 (12): : 890 - 900
  • [39] Homoclinic orbits and chaos in a multimode laser
    Tang, DY
    Heckenberg, NR
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1997, 14 (11) : 2930 - 2935
  • [40] Chaos near a reversible homoclinic bifocus
    Barrientos, Pablo G.
    Raibekas, Artem
    Rodrigues, Alexandre A. P.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2019, 34 (03): : 504 - 516