Homoclinic chaos and its organization in a nonlinear optics model

被引:12
|
作者
Pusuluri, Krishna [1 ]
Shilnikov, Andrey [1 ,2 ]
机构
[1] Georgia State Univ, Neurosci Inst, Petit Sci Ctr, 100 Piedmont Ave, Atlanta, GA 30303 USA
[2] Georgia State Univ, Dept Math & Stat, Petit Sci Ctr, 100 Piedmont Ave, Atlanta, GA 30303 USA
基金
俄罗斯科学基金会;
关键词
LASER; INSTABILITIES;
D O I
10.1103/PhysRevE.98.040202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We developed a powerful computational approach to elaborate on the onset mechanisms of deterministic chaos due to complex homoclinic bifurcations in diverse systems. Its core is the reduction of phase space dynamics to symbolic binary representations that lets one detect regions of simple and complex dynamics as well as fine organization structures of the latter in parameter space. Massively parallel simulations shorten the computational time to disclose highly detailed bifurcation diagrams to a few seconds.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] HOMOCLINIC CHAOS FOR RAY OPTICS IN A FIBER
    HOLM, DD
    KOVACIC, G
    PHYSICA D, 1991, 51 (1-3): : 177 - 188
  • [2] (INVITED) Homoclinic puzzles and chaos in a nonlinear laser model
    Pusuluri, K.
    Meijer, H. G. E.
    Shilnikov, A. L.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 93
  • [3] Homoclinic chaos in the Rossler model
    Malykh, Semyon
    Bakhanova, Yuliya
    Kazakov, Alexey
    Pusuluri, Krishna
    Shilnikov, Andrey
    CHAOS, 2020, 30 (11)
  • [4] COMPUTATIONAL CHAOS IN NONLINEAR OPTICS
    BELIC, M
    LJUBOJE, Z
    SAUER, M
    KAISER, F
    APPLIED PHYSICS B-PHOTOPHYSICS AND LASER CHEMISTRY, 1992, 55 (02): : 109 - 116
  • [5] Homoclinic chaos in a model of natural selection
    Charter K.
    Rogers T.
    Journal of Mathematical Biology, 1997, 35 (3) : 294 - 320
  • [6] Homoclinic chaos in a perennial grass model
    Coomes, B. A.
    Kocak, H.
    Palmer, K. J.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2023,
  • [7] Homoclinic chaos in a model of natural selection
    Charter, K
    Rogers, T
    JOURNAL OF MATHEMATICAL BIOLOGY, 1997, 35 (03) : 294 - 320
  • [8] BOUNDED SOLUTIONS OF THE NONLINEAR LYAPUNOV EQUATION AND HOMOCLINIC CHAOS
    Boichuk, O. A.
    Pokutnyi, O. O.
    UKRAINIAN MATHEMATICAL JOURNAL, 2019, 71 (06) : 869 - 882
  • [9] Bounded Solutions of the Nonlinear Lyapunov Equation and Homoclinic Chaos
    O. A. Boichuk
    O. O. Pokutnyi
    Ukrainian Mathematical Journal, 2019, 71 : 869 - 882
  • [10] Homoclinic and heteroclinic chaos in nonlinear systems driven by trichotomous noise
    雷佑铭
    张红霞
    Chinese Physics B, 2017, 26 (03) : 246 - 254