Model-based fault diagnosis of wind turbines built on Takagi-Sugeno fuzzy observers

被引:0
|
作者
Krokavec, Dusan [1 ]
Filasova, Anna [1 ]
机构
[1] Tech Univ Kosice, Dept Cybernet & Artificial Intelligence, Kosice, Slovakia
关键词
fault diagnosis; fault residuals; unknown input fuzzy observer; linear matrix inequalities; wind turbine fuzzy model; TOLERANT CONTROL; SYSTEMS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Unknown input Takagi-Sugeno fuzzy observer and H-infinity Takagi-Sugeno fuzzy observer techniques are utilized to generate fault residuals for fault diagnosis of wind turbines. To ensure the stability of the Takagi-Sugeno fuzzy observers error dynamics and to attenuate impact from disturbances, the linear matrix inequality approach is used to design the fuzzy observer parameters and disturbance decoupling. In consequence, simulating the designed fault detection implementation demonstrates main functionalities of the proposed approach.
引用
收藏
页码:377 / 382
页数:6
相关论文
共 50 条
  • [1] Fault diagnosis in wind turbines based on ANFIS and Takagi-Sugeno interval observers
    Perez-Perez, Esvan-Jesus
    Lopez-Estrada, Francisco-Ronay
    Puig, Vicenc
    Valencia-Palomo, Guillermo
    Santos-Ruiz, Ildeberto
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 206
  • [2] Model-based fault diagnosis using sliding mode observers to Takagi-Sugeno fuzzy model
    Castillo-Toledo, B
    Anzurez-Marin, J
    [J]. 2005 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL & 13TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1 AND 2, 2005, : 652 - 657
  • [3] Takagi-Sugeno Fuzzy Model Based Fault Estimation and Signal Compensation With Application to Wind Turbines
    Liu, Xiaoxu
    Gao, Zhiwei
    Chen, Michael Z. Q.
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (07) : 5678 - 5689
  • [4] A Model-Based Fault Detection and Prognostics Scheme for Takagi-Sugeno Fuzzy Systems
    Thumati, Balaje T.
    Feinstein, Miles A.
    Jagannathan, S.
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2014, 22 (04) : 736 - 748
  • [5] Observers for Takagi-Sugeno fuzzy systems
    Bergsten, P
    Palm, R
    Driankov, D
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2002, 32 (01): : 114 - 121
  • [6] Neuro-fuzzy Takagi Sugeno observer for fault diagnosis in wind turbines
    Perez-Perez, Esvan-Jesus
    Puig, Vicenc
    Lopez-Estrada, Francisco-Ronay
    Valencia-Palomo, Guillermo
    Santos-Ruiz, Ildeberto
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 3522 - 3527
  • [7] Fault Diagnosis for Takagi-Sugeno Model Wind Turbine Pitch System
    Rodriguez, Jorge Ivan Bermudez
    Hernandez-de-Leon, Hector Ricardo
    Marin, Juan Anzurez
    Santiago, Alejandro Medina
    Gomez, Elias Neftali Escobar
    Zapata, Betty Yolanda Lopez
    Guzman-Rabasa, Julio Alberto
    [J]. IEEE ACCESS, 2024, 12 : 25296 - 25308
  • [8] Fault reconstruction for Takagi-Sugeno fuzzy systems via learning observers
    Jia, Qingxian
    Chen, Wen
    Zhang, Yingchun
    Li, Huayi
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2016, 89 (03) : 564 - 578
  • [9] ANFIS and Takagi-Sugeno interval observers for fault diagnosis in bioprocess system
    Perez-Perez, Esvan-Jesus
    Fragoso-Mandujano, Jose-Armando
    Guzman-Rabasa, Julio -Alberto
    Gonzalez-Baldizon, Yair
    Flores-Guirao, Sheyla-Karina
    [J]. JOURNAL OF PROCESS CONTROL, 2024, 138
  • [10] Nonlinear Control of Wind Turbines with Hydrostatic Transmission Based on Takagi-Sugeno Model
    Schulte, Horst
    Georg, Soeren
    [J]. SCIENCE OF MAKING TORQUE FROM WIND 2014 (TORQUE 2014), 2014, 524