Fault Diagnosis for Takagi-Sugeno Model Wind Turbine Pitch System

被引:0
|
作者
Rodriguez, Jorge Ivan Bermudez [1 ]
Hernandez-de-Leon, Hector Ricardo [1 ]
Marin, Juan Anzurez [2 ]
Santiago, Alejandro Medina [3 ]
Gomez, Elias Neftali Escobar [1 ]
Zapata, Betty Yolanda Lopez [4 ]
Guzman-Rabasa, Julio Alberto [5 ]
机构
[1] Tecnol Nacl Mexico, Campus Tuxtla Gutierrez, Tuxtla Gutierrez 29050, Mexico
[2] Univ Michoacana, Fac Ingn Elect, Morelia 58000, Mexico
[3] Inst Nacl Astrofis Opt & Electr, Consejo Nacl Ciencia & Tecnol, Dept Comp Sci, Puebla 72840, Mexico
[4] Univ Politecn Chiapas, Direcc Ingn Biomed, Suchiapa 29150, Chiapas, Mexico
[5] IT Hermosillo, Tecnol Nacl Mexico, Hermosillo 83170, Mexico
关键词
Wind turbines; Observers; Takagi-Sugeno model; Rotors; Fault diagnosis; Blades; Wind speed; unknown inputs observer; pitch system; UNKNOWN INPUT OBSERVER; DESIGN; STATE;
D O I
10.1109/ACCESS.2024.3361285
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a fault diagnosis (FDD) approach based on a Takagi-Sugeno Unknown Input Observer (TS-UIO) that allows for the estimation of the states of an active pitch system for a studied wind turbine even in the presence of unknown interference factors. A scheme for FDD is proposed based on the residual evaluation between the non-linear model of the active pitch system and the Takagi-Sugeno unknown input observer proposed for the detection and isolation of faults in sensors with measurable premise variables. The proposed TS-UIO State Observer is resilient to disturbances and measurement noise due to its unique feature of decoupling unknown inputs, interruptions, or undefined factors that affect the behavior of the system under study. This study investigates the effect of load-induced stress on the mechanical blades of a wind turbine, caused by the wind force considered as an unknown disturbance or input to the system given its dependence on weather conditions. The proposed FDD algorithm includes Linear Matrix Inequalities (LMI) ensuring the estimation error dynamics approximates to zero. Successful implementation tests are demonstrated in an active pitch system with reference parameters based on a wind turbine model. The review outlines traditional FDD approaches, including those based on nonlinear models, as well as relatively new methods based on linear sector conditions. Special attention is given to Takagi-Sugeno (TS) methods.
引用
收藏
页码:25296 / 25308
页数:13
相关论文
共 50 条
  • [1] Wind Turbine Model and Observer in Takagi-Sugeno Model Structure
    Georg, Soeren
    Mueller, Matthias
    Schulte, Horst
    [J]. SCIENCE OF MAKING TORQUE FROM WIND 2012, 2014, 555
  • [2] Takagi-Sugeno Fuzzy Modelling and Robust Fault Reconstruction for Wind Turbine Systems
    Liu, Xiaoxu
    Gao, Zhiwei
    [J]. 2016 IEEE 14TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2016, : 492 - 495
  • [3] Model-based fault diagnosis of wind turbines built on Takagi-Sugeno fuzzy observers
    Krokavec, Dusan
    Filasova, Anna
    [J]. PROCEEDINGS OF THE 10TH INTERNATIONAL SCIENTIFIC SYMPOSIUM ON ELECTRICAL POWER ENGINEERING (ELEKTROENERGETIKA 2019), 2019, : 377 - 382
  • [4] Disturbance Compensation by Wind Speed Reconstruction based on a Takagi-Sugeno Wind Turbine Model
    Gauterin, Eckhard
    Schulte, Horst
    Georg, Soeren
    [J]. SCIENCE OF MAKING TORQUE FROM WIND 2014 (TORQUE 2014), 2014, 524
  • [5] Fault Reconstruction using a Takagi-Sugeno Sliding Mode Observer for the Wind Turbine Benchmark
    Poeschke, Florian
    Georg, Soeren
    Schulte, Horst
    [J]. 2014 UKACC INTERNATIONAL CONFERENCE ON CONTROL (CONTROL), 2014, : 456 - 461
  • [6] Fault diagnosis in wind turbines based on ANFIS and Takagi-Sugeno interval observers
    Perez-Perez, Esvan-Jesus
    Lopez-Estrada, Francisco-Ronay
    Puig, Vicenc
    Valencia-Palomo, Guillermo
    Santos-Ruiz, Ildeberto
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 206
  • [7] ANFIS and Takagi-Sugeno interval observers for fault diagnosis in bioprocess system
    Perez-Perez, Esvan-Jesus
    Fragoso-Mandujano, Jose-Armando
    Guzman-Rabasa, Julio -Alberto
    Gonzalez-Baldizon, Yair
    Flores-Guirao, Sheyla-Karina
    [J]. JOURNAL OF PROCESS CONTROL, 2024, 138
  • [8] Fault diagnosis observer for descriptor Takagi-Sugeno systems
    Lopez-Estrada, F. R.
    Theilliol, D.
    Astorga-Zaragoza, C. M.
    Ponsart, J. C.
    Valencia-Palomo, G.
    Camas-Anzueto, J.
    [J]. NEUROCOMPUTING, 2019, 331 : 10 - 17
  • [9] Sensor Fault Tolerant Control of a Wind Turbine via Takagi-Sugeno Fuzzy Observer and Model Predictive Control
    Feng, Xiaoran
    Patton, Ron
    Wang, Zhihuo
    [J]. 2014 UKACC INTERNATIONAL CONFERENCE ON CONTROL (CONTROL), 2014, : 480 - 485
  • [10] Sensor Fault Diagnosis Observer for an Electric Vehicle Modeled as a Takagi-Sugeno System
    Gomez-Penate, S.
    Lopez-Estrada, F. R.
    Valencia-Palomo, G.
    Osornio-Rios, R.
    Zepeda-Hernandez, J. A.
    Rios-Rojas, C.
    Camas-Anzueto, J.
    [J]. JOURNAL OF SENSORS, 2018, 2018