Evaluation of manual and automatic segmentation of the mouse heart from CINE MR images

被引:33
|
作者
Heijman, Edwin [1 ]
Aben, Jean-Paul [2 ]
Penners, Cindy [2 ]
Niessen, Petra [3 ]
Guillaume, Rene [2 ]
van Eys, Guillaume [3 ]
Nicolay, Klaas [1 ]
Strijkers, Gustav J. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Biomed Engn, Biomed NMR, NL-5600 MB Eindhoven, Netherlands
[2] Pie Med Imaging BV, Maastricht, Netherlands
[3] Univ Maastricht, Cardiovasc Res Inst Maastricht, Dept Mol Genet, Maastricht, Netherlands
关键词
mouse heart; segmentation; quantitative analysis; CINE MRI; automatic; global functional parameter;
D O I
10.1002/jmri.21236
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To compare global functional parameters determined from a stack of cinematographic MR images of mouse heart by a manual segmentation and an automatic segmentation algorithm. Materials and Methods: The manual and automatic segmentation results of 22 mouse hearts were compared. The automatic segmentation was based on propagation of a minimum cost algorithm in polar space starting from manually drawn contours in one heart phase. Intra- and interobserver variability as well as validity of the automatic segmentation was determined. To test the reproducibility of the algorithm the variability was calculated from the intra and interobserver input. Results: The mean time of segmentation for one dataset was around 10 minutes and approximate to 2.5 hours for automatic and manual segmentation, respectively. There were no significant differences between the automatic and the manual segmentation except for the end systolic epicardial volume. The automatically derived volumes correlated well with the manually derived volumes (R-2 = 0.90); left ventricular mass with and without papillary muscle showed a correlation R 2 of 0.74 and 0.76, respectively. The manual intraobserver variability was superior to the interobserver variability and the variability of the automatic segmentation, while the manual interobserver variability was comparable to the variability of the automatic segmentation. The automatic segmentation algorithm reduced the bias of the intra- and interobserver variability. Conclusion: We conclude that automatic segmentation of the mouse heart provides a fast and valid alternative to manual segmentation of the mouse heart.
引用
收藏
页码:86 / 93
页数:8
相关论文
共 50 条
  • [41] Automatic Brain Tumor Segmentation And Extraction In MR Images
    Sehgal, Aastha
    Goel, Shashwat
    Mangipudi, Parthasarathi
    Mehra, Anu
    Tyagi, Devyani
    2016 CONFERENCE ON ADVANCES IN SIGNAL PROCESSING (CASP), 2016, : 104 - 107
  • [42] Automatic Segmentation of the Intracranial Volume in Fetal MR Images
    Khalili, N.
    Moeskops, P.
    Claessens, N. H. P.
    Scherpenzeel, S.
    Turk, E.
    de Heus, R.
    Benders, M. J. N. L.
    Viergever, M. A.
    Pluim, J. P. W.
    Isgum, I.
    FETAL, INFANT AND OPHTHALMIC MEDICAL IMAGE ANALYSIS, 2017, 10554 : 42 - 51
  • [43] Automatic segmentation of MR images of the developing newborn brain
    Prastawa, M
    Gilmore, JH
    Lin, WL
    Gerig, G
    MEDICAL IMAGE ANALYSIS, 2005, 9 (05) : 457 - 466
  • [44] Automatic Brain Tumor Detection and Segmentation in MR Images
    Zeljkovic, V.
    Druzgalski, C.
    Zhang, Y.
    Zhu, Z.
    Xu, Z.
    Zhang, D.
    Mayorga, P.
    2014 PAN AMERICAN HEALTH CARE EXCHANGES (PAHCE), 2014,
  • [45] Automatic Abdominal Aortic Aneurysm segmentation in MR images
    Martinez-Munoz, Sergio
    Ruiz-Fernandez, Daniel
    Jose Galiana-Merino, Juan
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 54 : 78 - 87
  • [46] A Study of Left Ventricular (LV) Segmentation on Cardiac Cine-MR Images
    Ahad, Md Atiqur Rahman
    Jahan, Israt
    JURNAL KEJURUTERAAN, 2022, 34 (03): : 463 - 473
  • [47] Evaluation of an automatic brain segmentation method developed for neonates on adult MR brain images
    Moeskops, Pim
    Viergever, Max A.
    Benders, Manon J. N. L.
    Isgum, Ivana
    MEDICAL IMAGING 2015: IMAGE PROCESSING, 2015, 9413
  • [48] Comparison of manual and automatic section positioning of brain MR images
    Benner, T
    Wisco, JJ
    van der Kouwe, AJW
    Fischl, B
    Vangel, MG
    Hochberg, FH
    Sorensen, AG
    RADIOLOGY, 2006, 239 (01) : 246 - 254
  • [49] AUTOMATIC THREE-LABEL BONE SEGMENTATION FROM KNEE MR IMAGES
    Shan, Liang
    Zach, Christopher
    Niethammer, Marc
    2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2010, : 1325 - 1328
  • [50] Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images
    Jain, Saurabh
    Sima, Diana M.
    Ribbens, Annemie
    Cambron, Melissa
    Maertens, Anke
    Van Hecke, Wim
    De Mey, Johan
    Barkhof, Frederik
    Steenwijk, Martijn D.
    Daams, Marita
    Maes, Frederik
    Van Huffel, Sabine
    Vrenken, Hugo
    Smeets, Dirk
    NEUROIMAGE-CLINICAL, 2015, 8 : 367 - 375