Surface Micro-Reflector Array for Augmented Reality Display

被引:5
|
作者
Yan, Zhanjun [1 ,2 ,3 ]
Du, Chunlei [1 ]
Zhang, Lixin [4 ]
机构
[1] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] AVIC, Luoyang Inst Electroopt Equipment, Luoyang 471009, Peoples R China
[4] Unit 95903, Wuhan 430331, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2020年 / 12卷 / 02期
关键词
Augmented reality; waveguide; surface micro-reflector array; virtual image;
D O I
10.1109/JPHOT.2020.2971622
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Geometric optical waveguide display can significantly miniaturize the augmented reality eyeglasses, but suffers from the ghost image. In this paper, a method using surface micro-reflector array is proposed, which can dramatically suppress the ghost image. The transmission and expansion of the light bearing image are completed by using planar waveguide and micro-reflector array embedded in the surface layer of waveguide. The image quality is improved by using the dual channel to eliminate ghost image. The imaging process of optical system is modeled and simulated. The surface micro-reflector array waveguide element of 3 mm thickness is prepared for verification. The whole optical system has the advantages of simple structure, easy preparation and high structural strength. The display field of view is shown to be 25 degrees x 25 degrees, and the size of the full field of view area is 15 mm with even light distribution. What's more, the uniformity of imaging intensity is better than 20%, and the image is clear without ghost image, which can effectively realize the fusion of the virtual image and the real environment. Thus, the efficiency of augmented reality is greatly improved, and the danger of human eye safety is effectively avoided.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Augmented reality display based on user behavior
    Tsai, Chung-Hsien
    Huang, Jiung-Yao
    [J]. COMPUTER STANDARDS & INTERFACES, 2018, 55 : 171 - 181
  • [32] Integral floating display systems for augmented reality
    Hong, Jisoo
    Min, Sung-Wook
    Lee, Byoungho
    [J]. APPLIED OPTICS, 2012, 51 (18) : 4201 - 4209
  • [33] Display technologies for augmented reality in medical applications
    Eck, Ulrich
    Winkler, Alexander
    [J]. UNFALLCHIRURG, 2018, 121 (04): : 278 - 285
  • [34] Augmented Reality Head-Up-Display
    Cheng, Shun-Wen
    Chiang, Chih-Bin
    Su, Yi-Feng
    Hsu, Jih-Tao
    [J]. IDW/AD '12: PROCEEDINGS OF THE INTERNATIONAL DISPLAY WORKSHOPS, PT 2, 2012, 19 : 1273 - 1275
  • [35] Fundamental Challenges in Augmented Reality Display Technology
    Colburn, M.
    [J]. 2020 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2020,
  • [36] Monocular Hyperrealistic Virtual and Augmented Reality Display
    Okumura, Haruhiko
    Sasaki, Takashi
    Hotta, Aira
    Shinohara, Kazumitsu
    [J]. 2014 IEEE Fourth International Conference on Consumer Electronics Berlin (ICCE-Berlin), 2014, : 19 - 23
  • [37] Design of a Portable Shape Display for Augmented Reality
    Tsui, Tse
    Morimoto, Tania K.
    [J]. 2021 IEEE WORLD HAPTICS CONFERENCE (WHC), 2021, : 91 - 96
  • [38] Extending Virtual Reality Display Wall Environments Using Augmented Reality
    Nishimoto, Arthur
    Johnson, Andrew
    [J]. ACM CONFERENCE ON SPATIAL USER INTERACTION (SUI 2019), 2019,
  • [39] A shared-aperture tracking display for augmented reality
    Chinthammit, W
    Seibel, EJ
    Furness, TA
    [J]. PRESENCE-TELEOPERATORS AND VIRTUAL ENVIRONMENTS, 2003, 12 (01) : 1 - 18
  • [40] Design of foveated contact lens display for augmented reality
    Chen, Jie
    Mi, Lantian
    Chen, Chao Ping
    Liu, Haowen
    Jiang, Jinghui
    Zhang, Wenbo
    [J]. OPTICS EXPRESS, 2019, 27 (26): : 38204 - 38219