Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems

被引:107
|
作者
Khandhar, Amit P. [1 ]
Ferguson, R. Matthew [1 ]
Krishnan, Kannan M. [1 ]
机构
[1] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
关键词
SIZE; FE3O4; SPIN;
D O I
10.1063/1.3556948
中图分类号
O59 [应用物理学];
学科分类号
摘要
Magnetite (Fe3O4) nanoparticles (MNPs) are suitable materials for Magnetic Fluid Hyperthermia (MFH), provided their size is carefully tailored to the applied alternating magnetic field (AMF) frequency. Since aqueous synthesis routes produce polydisperse MNPs that are not tailored for any specific AMF frequency, we have developed a comprehensive protocol for synthesizing highly monodispersed MNPs in organic solvents, specifically tailored for our field conditions (f = 376 kHz, H-0 =13.4 kA/m) and subsequently transferred them to water using a biocompatible amphiphilic polymer. These MNPs (sigma(avg.) 0.175) show truly size-dependent heating rates, indicated by a sharp peak in the specific loss power (SLP, W/g Fe3O4) for 16 nm (diameter) particles. For broader size distributions (sigma(avg.) 0.266), we observe a 30% drop in overall SLP. Furthermore, heating measurements in biological medium [Dulbecco's modified Eagle medium (DMEM)+10% fetal bovine serum] show a significant drop for SLP (similar to 30% reduction in 16 nm MNPs). Dynamic Light Scattering (DLS) measurements show particle hydrodynamic size increases over time once dispersed in DMEM, indicating particle agglomeration. Since the effective magnetic relaxation time of MNPs is determined by fractional contribution of the Neel (independent of hydrodynamic size) and Brownian (dependent on hydrodynamic size) components, we conclude that agglomeration in biological medium modifies the Brownian contribution and thus the net heating capacity of MNPs. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3556948]
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Role of dextran decomposition process on the magnetite nanoparticles crystallization and magnetic hyperthermia effect
    Ciuraszkiewicz, Agnieszka
    Hawelek, Lukasz
    Gebara, Piotr
    Warski, Tymon
    Stan-Glowinska, Katarzyna
    Lukowiec, Dariusz
    Kolano-Burian, Aleksandra
    Wojewoda-Budka, Joanna
    Radon, Adrian
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2025, 623
  • [42] Magnetite Nanoparticles for both Magnetic Hyperthermia and 3T MRI of Macrophages
    Kosuge, Hisanori
    Kitagawa, Toshiro
    Kobayashi, Takeshi
    McConnell, Michael V.
    CIRCULATION, 2010, 122 (21)
  • [43] Study of heating curves generated by magnetite nanoparticles aiming application in magnetic hyperthermia
    da Silva, F. A. S.
    de Campos, M. F.
    BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2020, 37 (03) : 543 - 553
  • [44] Study of heating curves generated by magnetite nanoparticles aiming application in magnetic hyperthermia
    F. A. S. da Silva
    M. F. de Campos
    Brazilian Journal of Chemical Engineering, 2020, 37 : 543 - 553
  • [45] Agglomeration of magnetite nanoparticles with citrate shell in an aqueous magnetic fluid
    Pleshakov, Ivan, V
    Ryzhov, Vyacheslav A.
    Marchenko, Yaroslav Yu.
    Alekseev, Arseniy A.
    Karseeva, Elina K.
    Nevedomskiy, Vladimir N.
    V. Prokof'ev, Andrey
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2023, 14 (03): : 334 - 341
  • [46] Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles
    Laurent, Sophie
    Dutz, Silvio
    Haefeli, Urs O.
    Mahmoudi, Morteza
    ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2011, 166 (1-2) : 8 - 23
  • [47] Green Capping Agents and Digestive Ripening for Size Control of Magnetite for Magnetic Fluid Hyperthermia
    Kahil H.
    Ali I.A.E.-R.
    Ebraheem H.
    Current Nanomaterials, 2024, 9 (03) : 239 - 251
  • [48] Hyperthermia Temperature of Magnetic Fluid with Superparamagnetic Nanoparticles Subjected to an Alternating Magnetic Field
    Chen, Kuen-Hau
    Chen, Bor-Chyuan
    Ho, Ching-Yen
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (04) : 3018 - 3023
  • [49] Magnetite nanoparticles anchored on graphene oxide loaded with doxorubicin hydrochloride for magnetic hyperthermia therapy
    Ren, Meng-Xin
    Wang, Yu-Qian
    Lei, Bu-Yue
    Yang, Xiao-Xiao
    Hou, Yun-Lei
    Meng, Wen-Jie
    Zhao, Dong-Lin
    CERAMICS INTERNATIONAL, 2021, 47 (14) : 20686 - 20692
  • [50] Synthesis, characterization, and biocompatibility of pure and doped magnetite nanoparticles for magnetic hyperthermia in cancer treatment
    Hassan, Jalees Ul
    Shahzadi, Shamaila
    Waheed, Fareeha
    Nawaz, Sajida
    Sharif, Rehana
    Riaz, Saira
    Ban, Dayan
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2024, 130 (09):