Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems

被引:107
|
作者
Khandhar, Amit P. [1 ]
Ferguson, R. Matthew [1 ]
Krishnan, Kannan M. [1 ]
机构
[1] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
关键词
SIZE; FE3O4; SPIN;
D O I
10.1063/1.3556948
中图分类号
O59 [应用物理学];
学科分类号
摘要
Magnetite (Fe3O4) nanoparticles (MNPs) are suitable materials for Magnetic Fluid Hyperthermia (MFH), provided their size is carefully tailored to the applied alternating magnetic field (AMF) frequency. Since aqueous synthesis routes produce polydisperse MNPs that are not tailored for any specific AMF frequency, we have developed a comprehensive protocol for synthesizing highly monodispersed MNPs in organic solvents, specifically tailored for our field conditions (f = 376 kHz, H-0 =13.4 kA/m) and subsequently transferred them to water using a biocompatible amphiphilic polymer. These MNPs (sigma(avg.) 0.175) show truly size-dependent heating rates, indicated by a sharp peak in the specific loss power (SLP, W/g Fe3O4) for 16 nm (diameter) particles. For broader size distributions (sigma(avg.) 0.266), we observe a 30% drop in overall SLP. Furthermore, heating measurements in biological medium [Dulbecco's modified Eagle medium (DMEM)+10% fetal bovine serum] show a significant drop for SLP (similar to 30% reduction in 16 nm MNPs). Dynamic Light Scattering (DLS) measurements show particle hydrodynamic size increases over time once dispersed in DMEM, indicating particle agglomeration. Since the effective magnetic relaxation time of MNPs is determined by fractional contribution of the Neel (independent of hydrodynamic size) and Brownian (dependent on hydrodynamic size) components, we conclude that agglomeration in biological medium modifies the Brownian contribution and thus the net heating capacity of MNPs. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3556948]
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia
    Suto, Makoto
    Hirota, Yasutake
    Mamiya, Hiroaki
    Fujita, Asaya
    Kasuya, Ryo
    Tohji, Kazuyuki
    Jeyadevan, Balachandran
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2009, 321 (10) : 1493 - 1496
  • [2] Magnetite nanoparticles for magnetic fluid hyperthermia using modified oxidation method
    Hosono, T.
    Takahashi, H.
    Sato, Y.
    Tohji, K.
    Jeyadevan, B.
    WATER DYNAMICS, 2007, 898 : 135 - +
  • [3] Estimation of Magnetic Anisotropy of Individual Magnetite Nanoparticles for Magnetic Hyperthermia
    Mamiya, Hiroaki
    Fukumoto, Hiroya
    Huaman, Jhon L. Cuya
    Suzuki, Kazumasa
    Miyamura, Hiroshi
    Balachandran, Jeyadevan
    ACS NANO, 2020, 14 (07) : 8421 - 8432
  • [4] On the relaxation time of interacting superparamagnetic nanoparticles and implications for magnetic fluid hyperthermia
    Kuncser, Andrei
    Iacob, Nicusor
    Kuncser, Victor E.
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2019, 10 : 1280 - 1289
  • [5] Preparation of magnetite aqueous dispersion for magnetic fluid hyperthermia
    Kikuchi, Teppei
    Kasuya, Ryo
    Endo, Shota
    Nakamura, Akira
    Takai, Toshiyuki
    Metzler-Nolte, Nils
    Tohji, Kazuyuki
    Balachandran, Jeyadevan
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2011, 323 (10) : 1216 - 1222
  • [6] Magnetic hyperthermia with magnetite nanoparticles: electrostatic and polymeric stabilization
    Iglesias, G.
    Delgado, A. V.
    Kujda, M.
    Ramos-Tejada, M. M.
    COLLOID AND POLYMER SCIENCE, 2016, 294 (10) : 1541 - 1550
  • [7] Magnetic hyperthermia with magnetite nanoparticles: electrostatic and polymeric stabilization
    G. Iglesias
    A.V. Delgado
    M. Kujda
    M.M. Ramos-Tejada
    Colloid and Polymer Science, 2016, 294 : 1541 - 1550
  • [8] Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia
    Lanier, Olivia L.
    Korotych, Olena, I
    Monsalve, Adam G.
    Wable, Dayita
    Savliwala, Shehaab
    Grooms, Noa W. F.
    Nacea, Christopher
    Tuitt, Omani R.
    Dobson, Jon
    INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2019, 36 (01) : 687 - 701
  • [9] Gelatine-assisted synthesis of magnetite nanoparticles for magnetic hyperthermia
    Alves, Andre F.
    Mendo, Sofia G.
    Ferreira, Liliana P.
    Mendonca, Maria Helena
    Ferreira, Paula
    Godinho, Margarida
    Cruz, Maria Margarida
    Carvalho, Maria Deus
    JOURNAL OF NANOPARTICLE RESEARCH, 2016, 18 (01) : 1 - 13
  • [10] Coating of Magnetite Nanoparticles with Fucoidan to Enhance Magnetic Hyperthermia Efficiency
    Goncalves, Joana
    Nunes, Claudia
    Ferreira, Liliana
    Cruz, Maria Margarida
    Oliveira, Helena
    Bastos, Veronica
    Mayoral, Alvaro
    Zhang, Qing
    Ferreira, Paula
    NANOMATERIALS, 2021, 11 (11)