An automatic pipeline for the design of irreversible derivatives identifies a potent SARS-CoV-2 Mpro inhibitor

被引:51
|
作者
Zaidman, Daniel [1 ]
Gehrtz, Paul [1 ]
Filep, Mihajlo [1 ]
Fearon, Daren [2 ]
Gabizon, Ronen [1 ]
Douangamath, Alice [2 ]
Prilusky, Jaime [3 ]
Duberstein, Shirly [4 ,5 ]
Cohen, Galit [4 ,5 ]
Owen, C. David [2 ,6 ]
Resnick, Efrat [1 ]
Strain-Damerell, Claire [2 ,6 ]
Lukacik, Petra [2 ,6 ]
Barr, Haim [4 ,5 ]
Walsh, Martin A. [2 ,6 ]
von Delft, Frank [2 ,6 ,7 ,8 ]
London, Nir [1 ]
机构
[1] Weizmann Inst Sci, Dept Chem & Struct Biol, IL-7610001 Rehovot, Israel
[2] Diamond Light Source Ltd, Harwell Sci & Innovat Campus, Didcot OX11 0QX, Oxon, England
[3] Weizmann Inst Sci, Life Sci Core Facil, IL-7610001 Rehovot, Israel
[4] Weizmann Inst Sci, Wohl Inst Drug Discovery, IL-7610001 Rehovot, Israel
[5] Weizmann Inst Sci, Stephen Grand Israel Natl Ctr Personalized Med, IL-7610001 Rehovot, Israel
[6] Res Complex Harwell, Harwell Sci & Innovat Campu, Didcot OX11 0FA, Oxon, England
[7] Univ Oxford, Headington, Struct Genom Consortium, Old Rd Campus,Roosevelt Dr, Headington OX3 7DQ, England
[8] Univ Johannesburg, Dept Biochem, ZA-2006 Auckland Pk, South Africa
基金
巴西圣保罗研究基金会; 以色列科学基金会; 加拿大创新基金会;
关键词
COVALENT INHIBITORS; SYNTHETIC ACCESSIBILITY; DRUG-RESISTANCE; SMALL-MOLECULE; HIGHLY POTENT; DISCOVERY; KINASE; EGFR; LIGAND; OPTIMIZATION;
D O I
10.1016/j.chembiol.2021.05.018
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Designing covalent inhibitors is increasingly important, although it remains challenging. Here, we present covalentizer, a computational pipeline for identifying irreversible inhibitors based on structures of targets with non-covalent binders. Through covalent docking of tailored focused libraries, we identify candidates that can bind covalently to a nearby cysteine while preserving the interactions of the original molecule. We found similar to 11,000 cysteines proximal to a ligand across 8,386 complexes in the PDB. Of these, the protocol identified 1,553 structures with covalent predictions. In a prospective evaluation, five out of nine predicted covalent kinase inhibitors showed half-maximal inhibitory concentration (IC50) values between 155 nM and 4.5 mu M. Application against an existing SARS-CoV M-pro reversible inhibitor led to an acrylamide inhibitor series with low micromolar IC50 values against SARS-CoV-2 M-pro. The docking was validated by 12 co-crystal structures. Together these examples hint at the vast number of covalent inhibitors accessible through our protocol.
引用
收藏
页码:1795 / +
页数:18
相关论文
共 50 条
  • [21] Advances in the Development of SARS-CoV-2 Mpro Inhibitors
    Agost-Beltran, Laura
    de la Hoz-Rodriguez, Sergio
    Bou-Iserte, Lledo
    Rodriguez, Santiago
    Fernandez-de-la-Pradilla, Adrian
    Gonzalez, Florenci V.
    MOLECULES, 2022, 27 (08):
  • [22] Psoralidin acts as a dual protease inhibitor against PLpro and Mpro of SARS-CoV-2
    Trivedi, Aditya
    Kushwaha, Tushar
    Ishani, Sudhanshu
    Vrati, Sudhanshu
    Gupta, Dharmender
    Kayampeta, Sarala Rani
    Parvez, Mohammad Khalid
    Inampudi, Krishna Kishore
    Appaiahgari, Mohan Babu
    Sehgal, Deepak
    FEBS JOURNAL, 2025, 292 (05) : 1106 - 1123
  • [23] Impactful Mutations in Mpro of the SARS-CoV-2 Proteome
    Wolfe, Gideon
    Belhoussine, Othmane
    Dawson, Anais
    Lisaius, Maxwell
    Jagodzinski, Filip
    ACM-BCB 2020 - 11TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2020,
  • [24] Virtual and In Vitro Screening of Natural Products Identifies Indole and Benzene Derivatives as Inhibitors of SARS-CoV-2 Main Protease (Mpro)
    Ang, Dony
    Kendall, Riley
    Atamian, Hagop S.
    BIOLOGY-BASEL, 2023, 12 (04):
  • [25] Designing novel inhibitor derivatives targeting SARS-CoV-2 Mpro enzyme: a deep learning and structure biology approach
    Joshi, Tushar
    Mathpal, Shalini
    Sharma, Priyanka
    Abraham, Akshay
    Solomon, Rajadurai Vijay
    Chandra, Subhash
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2024, 9 (10): : 1063 - 1076
  • [26] Protegrin-2, a potential inhibitor for targeting SARS-CoV-2 main protease Mpro
    Jan, Zainab
    Geethakumari, Anupriya M.
    Biswas, Kabir H.
    Jithesh, Puthen Veettil
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 3665 - 3671
  • [27] Rutin: A Potential Antiviral for Repurposing as a SARS-CoV-2 Main Protease (Mpro) Inhibitor
    Agrawal, Pawan K.
    Agrawal, Chandan
    Blunden, Gerald
    NATURAL PRODUCT COMMUNICATIONS, 2021, 16 (04)
  • [28] Structure-based computational screening of 470 natural quercetin derivatives for identification of SARS-CoV-2 Mpro inhibitor
    Umar, Abd. Kakhar
    Zothantluanga, James H.
    Luckanagul, Jittima Amie
    Limpikirati, Patanachai
    Sriwidodo, Sriwidodo
    PEERJ, 2023, 11
  • [29] Pharmacokinetics and Molecular Docking Studies of Uridine Derivatives as SARS-COV-2 Mpro Inhibitors
    Maowa, J.
    Hosen, M. A.
    Alam, A.
    Rana, K. M.
    Fujii, Y.
    Ozeki, Y.
    Kawsar, S. M. A.
    PHYSICAL CHEMISTRY RESEARCH, 2021, 9 (03): : 385 - 412
  • [30] Discovery of PLpro and Mpro Inhibitors for SARS-CoV-2
    Puhl, Ana C.
    Godoy, Andre S.
    Noske, Gabriela D.
    Nakamura, Aline M.
    Gawriljuk, Victor O.
    Fernandes, Rafaela S.
    Oliva, Glaucius
    Ekins, Sean
    ACS OMEGA, 2023, 8 (25): : 22603 - 22612