Eigenvalues of the (p, q, r)-Laplacian with a parametric boundary condition

被引:1
|
作者
Barbu, Luminita [1 ]
Morosanu, Gheorghe [2 ,3 ]
机构
[1] Ovidius Univ, Dept Math & Comp Sci, Fac Math & Comp Sci, 124 Mamaia Blvd, Constanta 900527, Romania
[2] Acad Romanian Scientists, Bucharest, Romania
[3] Babes Bolyai Univ, Fac Math & Comp Sci, 1 M Kogalniceanu Str, Cluj Napoca 400084, Romania
关键词
Eigenvalues; (p; q; r)-Laplacian; Sobolev space; Nehari manifold; Variational methods; BORN-INFELD EQUATION; HYPERSURFACES;
D O I
10.37193/CJM.2022.03.03
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider in a bounded domain Omega subset of R-N, N >= 2, with smooth boundary partial derivative Omega the following nonlinear eigenvalue problem {-Sigma(alpha is an element of{p, q, r}) rho(alpha)Delta(alpha) u = lambda a(x) vertical bar u vertical bar(r-2) u in Omega, (Sigma(alpha is an element of{p, q, r}) rho(alpha) vertical bar del u vertical bar(alpha-2)) partial derivative u/partial derivative v = lambda b(x) vertical bar u vertical bar(r - 2) u on partial derivative Omega where p, q, r is an element of (1, +infinity), q < p, r is not an element of {p, q}; rho(p), rho(q), rho(r) are positive constants; Delta(alpha) is the usual alpha-Laplacian, i.e., Delta(alpha)u = div (vertical bar del u vertical bar(alpha-2)del u); v is the unit outward normal to partial derivative Omega; a is an element of L-infinity (Omega), b is an element of L-infinity (partial derivative Omega) are given nonnegative functions satisfying integral(Omega) a dx + integral(partial derivative Omega )b d sigma > 0. Such a triple-phase problem is motivated by some models arising in mathematical physics. If r is not an element of (q, p), we determine a positive number lambda(r) such that the set of eigenvalues of the above problem is precisely {0} boolean OR (lambda(r), +infinity). On the other hand, in the complementary case r is an element of (q, p) with r < q(N - 1)/(N - q) if q < N, we prove that there exist two positive constants lambda(*) < lambda* such that any lambda is an element of {0} boolean OR [lambda*, infinity) is an eigenvalue of the above problem, while the set (-infinity, 0) boolean OR (0, lambda(*)) contains no eigenvalue lambda of the problem.
引用
收藏
页码:547 / 561
页数:15
相关论文
共 50 条
  • [31] Existence of Continuous Eigenvalues for a Class of Parametric Problems Involving the (p, 2)-Laplacian Operator
    Bhattacharya, Tilak
    Emamizadeh, Behrouz
    Farjudian, Amin
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2020, 165 (01) : 65 - 79
  • [32] Eigenvalues of the Laplacian in a Disk with the Dirichlet Condition on Finitely Many Small Boundary Parts in the Critical Case
    Gadyl’shin R.R.
    Rep’evskii S.V.
    Shishkina E.A.
    [J]. Journal of Mathematical Sciences, 2016, 213 (4) : 510 - 529
  • [33] On a (p, q)-Laplacian problem with parametric concave term and asymmetric perturbation
    Marano, Salvatore A.
    Mosconi, Sunra J. N.
    Papageorgiou, Nikolaos S.
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2018, 29 (01) : 109 - 125
  • [34] On low eigenvalues of the Laplacian with mixed boundary conditions
    Ashbaugh, Mark S.
    Chiacchio, Francesco
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (05) : 2544 - 2566
  • [35] On the eigenvalues of the p-Laplacian with varying p
    Huang, YX
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (11) : 3347 - 3354
  • [36] EIGENVALUES OF THE LAPLACIAN WITH NEUMANN BOUNDARY-CONDITIONS
    GOTTLIEB, HPW
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1985, 26 (JAN): : 293 - 309
  • [37] On the perturbation of eigenvalues for the p-Laplacian
    Melián, JG
    De Lis, JS
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (10): : 893 - 898
  • [38] Extremal p-Laplacian eigenvalues
    Antunes, Pedro R. S.
    [J]. NONLINEARITY, 2019, 32 (12) : 5087 - 5109
  • [39] Mixed eigenvalues of p-Laplacian
    Mu-Fa Chen
    Lingdi Wang
    Yuhui Zhang
    [J]. Frontiers of Mathematics in China, 2015, 10 : 249 - 274
  • [40] Mixed eigenvalues of p-Laplacian
    Chen, Mu-Fa
    Wang, Lingdi
    Zhang, Yuhui
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (02) : 249 - 274