EEG Signals of Motor Imagery Classification Using Adaptive Neuro-Fuzzy Inference System

被引:0
|
作者
El-aal, Shereen A. [1 ]
Ramadan, Rabie A. [2 ,3 ]
Ghali, Neveen I. [1 ]
机构
[1] Al Azhar Univ, Fac Sci, Cairo, Egypt
[2] Cairo Univ, Dept Comp Engn, Cairo, Egypt
[3] Hail Univ, Hail, Saudi Arabia
来源
ADVANCES IN NATURE AND BIOLOGICALLY INSPIRED COMPUTING | 2016年 / 419卷
关键词
Brain Computer Interface; Classification; Adaptive neuro fuzzy inference system;
D O I
10.1007/978-3-319-27400-3_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain Computer Interface (BCI) techniques are used to help disabled people to translate brain signals to control commands imitating specific human thinking based on Electroencephalography (EEG) signal processing. This paper tries to accurately classify motor imagery imagination tasks: e.g. left and right hand movement using three different methods which are: (1) Adaptive Neuro Fuzzy Inference System (ANFIS), (2) Linear Discriminant Analysis (LDA) and (3) k-nearest neighbor (KNN) classifiers. With ANFIS, different clustering methods are utilized which are Subtractive, Fuzzy C-Mean (FCM) and K-means. These clustering methods are examined and compared in terms of their accuracy. Three features are studied in this paper including AR coefficients, Band Power Frequency, and Common Spatial pattern (CSP). The classification accuracies with two optimal channels C3 and C4 are investigated.
引用
收藏
页码:105 / 116
页数:12
相关论文
共 50 条
  • [41] Improved adaptive neuro-fuzzy inference system
    Tarek Benmiloud
    Neural Computing and Applications, 2012, 21 : 575 - 582
  • [42] Seizure Prediction Using Adaptive Neuro-Fuzzy Inference System
    Rabbi, Ahmed F.
    Azinfar, Leila
    Fazel-Rezai, Reza
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 2100 - 2103
  • [43] Text Summarization Using Adaptive Neuro-Fuzzy Inference System
    Warule, Pratiksha D.
    Sawarkar, S. D.
    Gulati, Archana
    COMPUTING AND NETWORK SUSTAINABILITY, 2019, 75
  • [44] Iris Authentication Using Adaptive Neuro-Fuzzy Inference System
    Shiju, N. P.
    Kannan, D.
    JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 : 1841 - 1854
  • [45] Glaucoma detection using adaptive neuro-fuzzy inference system
    Huang, Mei-Ling
    Chen, Hsin-Yi
    Huang, Jian-Jun
    EXPERT SYSTEMS WITH APPLICATIONS, 2007, 32 (02) : 458 - 468
  • [46] Fall detection using adaptive neuro-fuzzy inference system
    Abdali-Mohammadi F.
    Rashidpour M.
    Fathi A.
    International Journal of Multimedia and Ubiquitous Engineering, 2016, 11 (04): : 91 - 106
  • [47] Face Recognition System using Adaptive Neuro-Fuzzy Inference System
    Chandrasekhar, Tadi
    Kumar, Ch. Sumanth
    2017 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER, AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2017, : 448 - 455
  • [48] An optimization of a planning information system using fuzzy inference system and adaptive neuro-Fuzzy inference system
    1600, World Scientific and Engineering Academy and Society, Ag. Ioannou Theologou 17-23, Zographou, Athens, 15773, Greece (10):
  • [49] Noise cancellation in Doppler ultrasound signals with adaptive neuro-fuzzy inference system
    Ubeyli, Elif Derya
    DIGITAL SIGNAL PROCESSING, 2010, 20 (01) : 63 - 76
  • [50] Neuro-fuzzy system for cardiac signals classification
    Azar, Ahmad Taher
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2011, 13 (1-2) : 108 - 116