Propagation of superconducting coherence via chiral quantum-Hall edge channels

被引:29
|
作者
Park, Geon-Hyoung [1 ]
Kim, Minsoo [1 ]
Watanabe, Kenji [2 ]
Taniguchi, Takashi [2 ]
Lee, Hu-Jong [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea
[2] Natl Inst Mat Sci, Adv Mat Lab, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
新加坡国家研究基金会;
关键词
ANDREEV REFLECTION; GRAPHENE; CONDUCTIVITY; SUPERCURRENT; JUNCTIONS;
D O I
10.1038/s41598-017-11209-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recently, there has been significant interest in superconducting coherence via chiral quantum-Hall (QH) edge channels at an interface between a two-dimensional normal conductor and a superconductor (N-S) in a strong transverse magnetic field. In the field range where the superconductivity and the QH state coexist, the coherent confinement of electron-and hole-like quasiparticles by the interplay of Andreev reflection and the QH effect leads to the formation of Andreev edge states (AES) along the N-S interface. Here, we report the electrical conductance characteristics via the AES formed in graphene-superconductor hybrid systems in a three-terminal configuration. This measurement configuration, involving the QH edge states outside a graphene-S interface, allows the detection of the longitudinal and QH conductance separately, excluding the bulk contribution. Convincing evidence for the superconducting coherence and its propagation via the chiral QH edge channels is provided by the conductance enhancement on both the upstream and the downstream sides of the superconducting electrode as well as in bias spectroscopy results below the superconducting critical temperature. Propagation of superconducting coherence via QH edge states was more evident as more edge channels participate in the Andreev process for high filling factors with reduced valley-mixing scattering.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Tuning the number of chiral edge channels in a fixed quantum anomalous Hall system
    Deng, Peng
    Han, Yulei
    Zhang, Peng
    Chong, Su Kong
    Qiao, Zhenhua
    Wang, Kang L.
    PHYSICAL REVIEW B, 2024, 109 (20)
  • [12] Edge-magnetoplasmon wave-packet revivals in the quantum-Hall effect
    Zulicke, U
    Bluhm, R
    Kostelecky, VA
    MacDonald, AH
    PHYSICAL REVIEW B, 1997, 55 (15): : 9800 - 9816
  • [13] Application of quantum Hall edge channels
    Komiyama, S
    Astafiev, O
    Machida, T
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 20 (1-2): : 43 - 56
  • [14] Photon generation by injection of electrons via quantum Hall edge channels
    Ikushima, Kenji
    Komiyama, Susumu
    PHYSICAL REVIEW B, 2011, 84 (15)
  • [15] MAPPING OF QUANTUM-HALL EDGE CHANNELS BY A DILUTION-REFRIGERATOR BASED NEAR-FIELD SCANNING OPTICAL MICROSCOPE
    Ito, H.
    Furuya, K.
    Shibata, Y.
    Ootuka, Y.
    Nomura, S.
    Kashiwaya, S.
    Yamaguchi, M.
    Tamura, H.
    Akazaki, T.
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2010, 19 (04) : 563 - 569
  • [16] Edge-magnetoplasmon wave-packet revivals in the quantum-Hall effect
    Zuelicke, U.
    Bluhm, R.
    Kostelecky, V. A.
    MacDonald, A. H.
    Physical Review B: Condensed Matter, 55 (15):
  • [17] ELECTRON QUANTUM OPTICS IN QUANTUM HALL EDGE CHANNELS
    Grenier, Charles
    Herve, Remy
    Feve, Gwendal
    Degiovanni, Pascal
    MODERN PHYSICS LETTERS B, 2011, 25 (12-13): : 1053 - 1073
  • [18] Chiral Thermoelectrics with Quantum Hall Edge States
    Sanchez, Rafael
    Sothmann, Bjoern
    Jordan, Andrew N.
    PHYSICAL REVIEW LETTERS, 2015, 114 (14)
  • [19] Scanning microscopy of nuclear spin polarization via quantum Hall edge channels
    Nakajima, T.
    Kobayashi, Y.
    Komiyama, S.
    Tsuboi, M.
    Machida, T.
    PHYSICAL REVIEW B, 2010, 81 (08):
  • [20] Counterpropagating topological and quantum Hall edge channels
    Saquib Shamim
    Pragya Shekhar
    Wouter Beugeling
    Jan Böttcher
    Andreas Budewitz
    Julian-Benedikt Mayer
    Lukas Lunczer
    Ewelina M. Hankiewicz
    Hartmut Buhmann
    Laurens W. Molenkamp
    Nature Communications, 13