Bregman divergence as relative operator entropy

被引:15
|
作者
Petz, D. [1 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1053 Budapest, Hungary
关键词
Bregman divergence; f-divergence; quantum relative entropy;
D O I
10.1007/s10474-007-6014-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Bregman operator divergence is introduced for density matrices by differentiation of the matrix-valued function x -> x log x. This quantity is compared with the relative operator entropy of Fujii and Kamei. It turns out that the trace is the usual Umegaki's relative entropy which is the only intersection of the classes of quasi-entropies and Bregman divergences.
引用
收藏
页码:127 / 131
页数:5
相关论文
共 50 条
  • [21] Some remarks on Tsallis relative operator entropy
    Shigeru Furuichi
    Hamid Reza Moradi
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [23] Operator means and the reduced relative quantum entropy
    Hansen, Frank
    ACTA SCIENTIARUM MATHEMATICARUM, 2024, 90 (3-4): : 565 - 574
  • [24] Some remarks on Tsallis relative operator entropy
    Furuichi, Shigeru
    Moradi, Hamid Reza
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (02)
  • [25] A NOTE ON INEQUALITIES FOR TSALLIS RELATIVE OPERATOR ENTROPY
    Zou, L.
    Jiang, Y.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2016, 42 (04): : 855 - 859
  • [27] Learning to Approximate a Bregman Divergence
    Siahkamari, Ali
    Xia, Xide
    Saligrama, Venkatesh
    Castanon, David
    Kulis, Brian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [28] SOME LOWER AND UPPER BOUNDS FOR RELATIVE OPERATOR ENTROPY
    Moradi, H. R.
    Hosseini, M. Shah
    Omidvar, M. E.
    Dragomir, S. S.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2017, 79 (03): : 97 - 106
  • [29] MONOTONICITY OF A TRACE RELATED TO TSALLIS RELATIVE OPERATOR ENTROPY
    Xu, Jiahang
    Shi, Jian
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (03): : 729 - 733
  • [30] Some lower and upper bounds for relative operator entropy
    1600, Politechnica University of Bucharest (79):