Matryoshka-inspired hierarchically structured triboelectric nanogenerators for wave energy harvesting

被引:75
|
作者
Pang, Yaokun [1 ]
Chen, Shoue [1 ]
Chu, Yihang [1 ]
Wang, Zhong Lin [2 ]
Cao, Changyong [1 ,3 ,4 ]
机构
[1] Michigan State Univ, Sch Packaging, Lab Soft Machines & Elect, E Lansing, MI 48824 USA
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[3] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA
[4] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
基金
美国食品与农业研究所;
关键词
Triboelectric nanogenerator (TENG); Matryoshka doll; Hierarchical structure; Energy harvesting; Wave energy; TENG network; DESIGN; GENERATOR;
D O I
10.1016/j.nanoen.2019.104131
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
There is a tremendous interest to harvest ocean wave energy due to its promising advantages of high-power density, wide distribution, independence of time of day, weather or seasons, and sustainability. However, most of the current energy harvesters or converters based on electromagnetic generators are suffering from unsatisfactory efficiency at low ocean wave triggering frequency and have the drawbacks of complex design, high cost and ease of corrosion in seawater. In this work, we report a matryoshka-inspired hierarchically structured triboelectric nanogenerator (HS-TENG) by nest-assembling multiple shells with decreasing sizes for effectively harvesting low-frequency wave energies with low-cost, high power density and high efficiency. As a proof-of-concept, we have fabricated a three-hierarchical-level HS-TENG by nesting three spherical acrylic shells filled with polytetrafluoroethylene (PTFE) balls into the gap spaces between the neighboring shells. The important factors that may affect the energy harvesting performance of the HS-TENG are studied, including the size and number of moving balls, the diameter of the holding shell, the amplitude and frequency of wave actuation, as well as the orientation angle between wave motion direction and electrode gap. It is demonstrated that the HS-TENG has superior output performance over the traditional single ball TENG (SB-TENG), with a maximum output peak power of 544 mu W at a low frequency of 2 Hz, more than 6.5 times of that obtained by a SB-TENG with the same size, capable of driving different wearable electronics. Based on the optimized design, we further demonstrate that a HS-TENG network formed by a 3 x 3 device array can directly lighten dozens of light-emitting diodes and power an electronic thermometer for monitoring water condition, indicating its capability in effectively harvesting water wave energy for potential large-scale deployment in the ocean. This study provides an innovative hierarchical structure that can effectively improve the output performance of TENGs and paves the way for developing next-generation high-performance TENGs for blue energy harvesting.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [41] Triboelectric nanogenerators: Harvesting mechanical energy using polymer films
    Wang, Zhong Lin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [42] Hybrid Energy-Harvesting Systems Based on Triboelectric Nanogenerators
    Pang, Yaokun
    Cao, Yunteng
    Derakhshani, Masoud
    Fang, Yuhui
    Wang, Zhong Lin
    Cao, Changyong
    MATTER, 2021, 4 (01) : 116 - 143
  • [43] Circuit Modeling Approach for Analyzing Triboelectric Nanogenerators for Energy Harvesting
    Yoon, Bo-Kyung
    Baik, Jeong Min
    Kim, Katherine A.
    2018 INTERNATIONAL POWER ELECTRONICS CONFERENCE (IPEC-NIIGATA 2018 -ECCE ASIA), 2018, : 3063 - 3068
  • [44] Recent advances in ocean energy harvesting based on triboelectric nanogenerators
    Song, Changhui
    Zhu, Xiao
    Wang, Maoli
    Yang, Ping
    Chen, Linke
    Hong, Le
    Cui, Weicheng
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 53
  • [45] Energy Harvesting Using Wastepaper-Based Triboelectric Nanogenerators
    Zhang, Renyun
    Hummelgard, Magnus
    Ortegren, Jonas
    Andersson, Henrik
    Olsen, Martin
    Chen, Wenshuai
    Wang, Peihong
    Dahlstrom, Christina
    Eivazi, Alireza
    Norgren, Magnus
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (11)
  • [46] Harvesting Environment Mechanical Energy by Direct Current Triboelectric Nanogenerators
    Chuncai Shan
    Kaixian Li
    Yuntao Cheng
    Chenguo Hu
    Nano-Micro Letters, 2023, 15
  • [47] Hybrid Piezoelectric and Triboelectric Nanogenerators for Energy Harvesting and Walking Sensing
    Nazar, Ali Matin
    Egbe, King-James Idala
    Jiao, Pengcheng
    ENERGY TECHNOLOGY, 2022, 10 (06)
  • [48] Harvesting Environment Mechanical Energy by Direct Current Triboelectric Nanogenerators
    Shan, Chuncai
    Li, Kaixian
    Cheng, Yuntao
    Hu, Chenguo
    NANO-MICRO LETTERS, 2023, 15 (01)
  • [49] Triboelectric Nanogenerators for Energy Harvesting in Ocean: A Review on Application and Hybridization
    Nazar, Ali Matin
    Egbe, King-James Idala
    Abdollahi, Azam
    Hariri-Ardebili, Mohammad Amin
    ENERGIES, 2021, 14 (18)
  • [50] Engraved pattern spacer triboelectric nanogenerators for mechanical energy harvesting
    Zhong, Wei
    Xu, Bingang
    Gao, Yuanyuan
    NANO ENERGY, 2022, 92