A HYBRIDIZABLE WEAK GALERKIN METHOD FOR THE HELMHOLTZ EQUATION WITH LARGE WAVE NUMBER: hp ANALYSIS

被引:0
|
作者
Wang, Jiangxing [1 ]
Zhang, Zhimin [1 ,2 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
美国国家科学基金会;
关键词
Weak Galerkin method; hybridizable method; Helmholtz equation; large wave number; error estimates; FINITE-ELEMENT-METHOD; PREASYMPTOTIC ERROR ANALYSIS; 2ND-ORDER ELLIPTIC PROBLEMS; CIP-FEM; VERSION; APPROXIMATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an hp hybridizable weak Galerkin (hp-HWG) method is introduced to solve the Helmholtz equation with large wave number in two and three dimensions. By choosing a specific parameter and using the duality argument, we prove that the proposed method is stable under certain mesh constraint. Error estimate is obtained by using the stability analysis and the duality argument. Several numerical results are provided to confirm our theoretical results.
引用
收藏
页码:744 / 761
页数:18
相关论文
共 50 条
  • [31] ON THE SUPERCONVERGENCE OF A HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR THE CAHN-HILLIARD EQUATION
    Chen, Gang
    Han, Daozhi
    Singler, John R.
    Zhang, Yangwen
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (01) : 83 - 109
  • [32] A ROBUST DOMAIN DECOMPOSITION METHOD FOR THE HELMHOLTZ EQUATION WITH HIGH WAVE NUMBER
    Chen, Wenbin
    Liu, Yongxiang
    Xu, Xuejun
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (03): : 921 - 944
  • [33] Comparison of implicit and explicit hybridizable discontinuous Galerkin methods for the acoustic wave equation
    Kronbichler, M.
    Schoeder, S.
    Mueller, C.
    Wall, W. A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 106 (09) : 712 - 739
  • [34] ANALYSIS OF A HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR THE MAXWELL OPERATOR
    Chen, Gang
    Cui, Jintao
    Xu, Liwei
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (01): : 301 - 324
  • [35] Helmholtz Wave Equation Based Discontinuous Galerkin Time Domain Method for 3D Electromagnetic Analysis
    Tian, Cheng-Yi
    Wang, Peng
    Shi, Yan
    Li, Long
    2017 IEEE SIXTH ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION (APCAP), 2017,
  • [36] ROBUST ADAPTIVE hp DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS FOR THE HELMHOLTZ EQUATION
    Congreve, Scott
    Gedicke, Joscha
    Perugia, Ilaria
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (02): : A1121 - A1147
  • [37] Convergence analysis of an adaptive interior penalty discontinuous Galerkin method for the Helmholtz equation
    Hoppe, R. H. W.
    Sharma, N.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (03) : 898 - 921
  • [38] Mortar Coupling of hp-Discontinuous Galerkin and Boundary Element Methods for the Helmholtz Equation
    Erath, Christoph
    Mascotto, Lorenzo
    Melenk, Jens M.
    Perugia, Ilaria
    Rieder, Alexander
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (01)
  • [39] The Weak Galerkin Method for Linear Hyperbolic Equation
    Zhai, Qilong
    Zhang, Ran
    Malluwawadu, Nolisa
    Hussain, Saqib
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 24 (01) : 152 - 166
  • [40] A generalized weak Galerkin method for Oseen equation
    Qi, Wenya
    Seshaiyer, Padmanabhan
    Wang, Junping
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 440