Bistability in Rayleigh-Benard convection with a melting boundary

被引:42
|
作者
Purseed, J. [1 ]
Favier, B. [1 ]
Duchemin, L. [1 ]
Hester, E. W. [2 ]
机构
[1] Aix Marseille Univ, IRPHE, Cent Marseille, CNRS, Marseille, France
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
关键词
THERMAL-CONVECTION; PATTERN-FORMATION; HEAT-TRANSFER; BIFURCATIONS; INTERFACE; TURBULENT; SYSTEMS; GROWTH; MODELS; WATER;
D O I
10.1103/PhysRevFluids.5.023501
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A pure and incompressible material is confined between two plates such that it is heated from below and cooled from above. When its melting temperature is comprised between these two imposed temperatures, an interface separating liquid and solid phases appears. Depending on the initial conditions, freezing or melting occurs until the interface eventually converges toward a stationary state. This evolution is studied numerically in a two-dimensional configuration using a phase-field method coupled with the Navier-Stokes equations. Varying the control parameters of the model, we exhibit two types of equilibria: diffusive and convective. In the latter case, Rayleigh-Benard convection in the liquid phase shapes the solid-liquid front, and a macroscopic topography is observed. A simple way of predicting these equilibrium positions is discussed and then compared with the numerical simulations. In some parameter regimes, we show that multiple equilibria can coexist depending on the initial conditions. We also demonstrate that, in this bistable regime, transitioning from the diffusive to the convective equilibrium is inherently a nonlinear mechanism involving finite-amplitude perturbations.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Homogeneous rayleigh-benard convection
    Calzavarini, E.
    Lohse, D.
    Toschi, F.
    PROGRESS IN TURBULENCE II, 2007, 109 : 181 - +
  • [22] INTERMITTENCY IN RAYLEIGH-BENARD CONVECTION
    BERGE, P
    DUBOIS, M
    MANNEVILLE, P
    POMEAU, Y
    JOURNAL DE PHYSIQUE LETTRES, 1980, 41 (15): : L341 - L345
  • [23] The evolution of the boundary layer in turbulent Rayleigh-Benard convection in air
    du Puits, R.
    Willert, C.
    PHYSICS OF FLUIDS, 2016, 28 (04)
  • [24] Boundary layers in rotating weakly turbulent Rayleigh-Benard convection
    Stevens, Richard J. A. M.
    Clercx, Herman J. H.
    Lohse, Detlef
    PHYSICS OF FLUIDS, 2010, 22 (08)
  • [25] Matched boundary layers in turbulent Rayleigh-Benard convection of mercury
    Segawa, T
    Naert, A
    Sano, M
    PHYSICAL REVIEW E, 1998, 57 (01): : 557 - 560
  • [26] Thermal Boundary Layer Equation for Turbulent Rayleigh-Benard Convection
    Shishkina, Olga
    Horn, Susanne
    Wagner, Sebastian
    Ching, Emily S. C.
    PHYSICAL REVIEW LETTERS, 2015, 114 (11)
  • [27] Boundary Zonal Flow in Rotating Turbulent Rayleigh-Benard Convection
    Zhang, Xuan
    van Gils, Dennis P. M.
    Horn, Susanne
    Wedi, Marcel
    Zwirner, Lukas
    Ahlers, Guenter
    Ecke, Robert E.
    Weiss, Stephan
    Bodenschatz, Eberhard
    Shishkina, Olga
    PHYSICAL REVIEW LETTERS, 2020, 124 (08)
  • [28] SHEARED BOUNDARY-LAYERS IN TURBULENT RAYLEIGH-BENARD CONVECTION
    SOLOMON, TH
    GOLLUB, JP
    PHYSICAL REVIEW LETTERS, 1990, 64 (20) : 2382 - 2385
  • [29] Thermal and viscous boundary layers in turbulent Rayleigh-Benard convection
    Scheel, J. D.
    Kim, E.
    White, K. R.
    JOURNAL OF FLUID MECHANICS, 2012, 711 : 281 - 305
  • [30] Regime crossover in Rayleigh-Benard convection with mixed boundary conditions
    Ostilla-Monico, Rodolfo
    Amritkar, Amit
    JOURNAL OF FLUID MECHANICS, 2020, 903 (903)