Fusion in the periodic Temperley-Lieb algebra and connectivity operators of loop models

被引:8
|
作者
Ikhlef, Yacine [1 ]
Morin-Duchesne, Alexi [2 ,3 ,4 ]
机构
[1] Sorbonne Univ, Lab Phys Theor & Hautes Energies, CNRS, LPTHE, F-75005 Paris, France
[2] Max Planck Inst Math, D-53111 Bonn, Germany
[3] Leibniz Univ Hannover, D-30167 Hannover, Germany
[4] Univ Ghent, Fac Sci, Dept Appl Math Comp Sci & Stat, Krijgslaan 281-S9, B-9000 Ghent, Belgium
来源
SCIPOST PHYSICS | 2022年 / 12卷 / 01期
关键词
PERCOLATION;
D O I
10.21468/SciPostPhys.12.1.030
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In two-dimensional loop models, the scaling properties of critical random curves are encoded in the correlators of connectivity operators. In the dense O(n) loop model, any such operator is naturally associated to a standard module of the periodic Temperley-Lieb algebra. We introduce a new family of representations of this algebra, with connectivity states that have two marked points, and argue that they define the fusion of two standard modules. We obtain their decomposition on the standard modules for generic values of the parameters, which in turn yields the structure of the operator product expansion of connectivity operators.
引用
收藏
页数:47
相关论文
共 50 条
  • [21] THE FIBONACCI MODEL AND THE TEMPERLEY-LIEB ALGEBRA
    Kauffman, Louis H.
    Lomonaco, Samuel J., Jr.
    STATISTICAL PHYSICS, HIGH ENERGY, CONDENSED MATTER AND MATHEMATICAL PHYSICS, 2008, : 277 - +
  • [22] THE TEMPERLEY-LIEB ALGEBRA AT ROOTS OF UNITY
    GOODMAN, FM
    WENZL, H
    PACIFIC JOURNAL OF MATHEMATICS, 1993, 161 (02) : 307 - 334
  • [23] Seminormal forms for the Temperley-Lieb algebra
    Bastias, Katherine Ormeno
    Ryom-Hansen, Steen
    JOURNAL OF ALGEBRA, 2025, 662 : 852 - 901
  • [24] Topological Defects in Lattice Models and Affine Temperley-Lieb Algebra
    Belletete, J.
    Gainutdinov, A. M.
    Jacobsen, J. L.
    Saleur, H.
    Tavares, T. S.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 400 (02) : 1203 - 1254
  • [25] Representations of the odd affine Temperley-Lieb algebra
    Reznikoff, Sarah A.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 77 : 83 - 98
  • [26] The two-boundary Temperley-Lieb algebra
    de Gier, Jan
    Nichols, Alexander
    JOURNAL OF ALGEBRA, 2009, 321 (04) : 1132 - 1167
  • [27] Framization of a Temperley-Lieb algebra of type B
    Flores, M.
    Goundaroulis, D.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (06)
  • [28] On spin systems related to the Temperley-Lieb algebra
    Kulish, PP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (38): : L489 - L493
  • [29] 3-MANIFOLDS AND THE TEMPERLEY-LIEB ALGEBRA
    LICKORISH, WBR
    MATHEMATISCHE ANNALEN, 1991, 290 (04) : 657 - 670
  • [30] Temperley-Lieb algebra of type B.
    Vincenti, C
    COMPTES RENDUS MATHEMATIQUE, 2006, 342 (04) : 233 - 236