Clenshaw-Curtis-type quadrature rule for hypersingular integrals with highly oscillatory kernels

被引:22
|
作者
Liu, Guidong [1 ]
Xiang, Shuhuang [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
关键词
Clenshaw-Curtis-type quadrature rule; Hadamard finite part; Highly oscillatory; Weak singularities; CAUCHY PRINCIPAL VALUE; NUMERICAL-SOLUTION; EFFICIENT COMPUTATION; GAUSS QUADRATURE; EQUATION; SINGULARITIES; CONVERGENCE; COLLOCATION; ALGORITHM;
D O I
10.1016/j.amc.2018.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Clenshaw-Curtis-type quadrature rule is proposed for the numerical evaluation of the hypersingular integrals with highly oscillatory kernels and weak singularities at the end points (sic)(-1)(1 )(x+1)(alpha)(1-x)(beta)g(x)/(x-s)(m)e(ikx )dx, s is an element of (-1,1) for any smooth functions g(x). Based on the fast Hermite interpolation, this paper provides a stable recurrence relation for these modified moments. Convergence rates with respect to the frequency k and the number of interpolation points N are considered. These theoretical results and high accuracy of the presented algorithm are illustrated by some numerical examples. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:251 / 267
页数:17
相关论文
共 50 条
  • [1] A generalization of Filon–Clenshaw–Curtis quadrature for highly oscillatory integrals
    Jing Gao
    Arieh Iserles
    BIT Numerical Mathematics, 2017, 57 : 943 - 961
  • [2] A generalization of Filon-Clenshaw-Curtis quadrature for highly oscillatory integrals
    Gao, Jing
    Iserles, Arieh
    BIT NUMERICAL MATHEMATICS, 2017, 57 (04) : 943 - 961
  • [3] On error bounds of Filon-Clenshaw-Curtis quadrature for highly oscillatory integrals
    Shuhuang Xiang
    Guo He
    Yeol Je Cho
    Advances in Computational Mathematics, 2015, 41 : 573 - 597
  • [4] On error bounds of Filon-Clenshaw-Curtis quadrature for highly oscillatory integrals
    Xiang, Shuhuang
    He, Guo
    Cho, Yeol Je
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2015, 41 (03) : 573 - 597
  • [5] Extensions of Clenshaw-Curtis-type rules to integrals over a semi-infinite interval
    Hiroshi Sugiura
    Takemitsu Hasegawa
    Numerical Algorithms, 2022, 90 : 3 - 30
  • [6] Extensions of Clenshaw-Curtis-type rules to integrals over a semi-infinite interval
    Sugiura, Hiroshi
    Hasegawa, Takemitsu
    NUMERICAL ALGORITHMS, 2022, 90 (01) : 3 - 30
  • [7] A bivariate Filon-Clenshaw-Curtis method of the highly oscillatory integrals on a square
    Gao, Jing
    Chang, Gaoqin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 439
  • [8] Error estimate for a corrected Clenshaw–Curtis quadrature rule
    Takemitsu Hasegawa
    Hiroshi Sugiura
    Numerische Mathematik, 2015, 130 : 135 - 149
  • [9] Stability and error estimates for Filon-Clenshaw-Curtis rules for highly oscillatory integrals
    Dominguez, V.
    Graham, I. G.
    Smyshlyaev, V. P.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (04) : 1253 - 1280
  • [10] A Gauss quadrature rule for hypersingular integrals
    Ashour, S. A.
    Ahmed, H. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (02) : 1671 - 1682