Stability and error estimates for Filon-Clenshaw-Curtis rules for highly oscillatory integrals

被引:92
|
作者
Dominguez, V. [1 ]
Graham, I. G. [2 ]
Smyshlyaev, V. P. [3 ]
机构
[1] Univ Publ Navarra, Escuela Tecn Super Ingenieros Ind & Telecomunicac, Dept Ingn Matemat & Informat, Tudela 31500, Spain
[2] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[3] UCL, Dept Math, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
numerical integration; highly oscillatory integrals; Clenshaw-Curtis quadrature; HIGH-FREQUENCY; NUMERICAL QUADRATURE; SCATTERING; FOURIER; EQUATIONS;
D O I
10.1093/imanum/drq036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we obtain new results on Filon-type methods for computing oscillatory integrals of the form integral(1)(-1) f(s) exp(iks) ds. We use a Filon approach based on interpolating f at the classical Clenshaw-Curtis points cos(j pi/N), j = 0, ... , N. The rule may be implemented in O(N log N) operations. We prove error estimates that show explicitly how the error depends both on the parameters k and N and on the Sobolev regularity of f. In particular we identify the regularity of f required to ensure the maximum rate of decay of the error as k -> infinity. We also describe a method for implementing the method and prove its stability both when N <= k and N > k. Numerical experiments illustrate both the stability of the algorithm and the sharpness of the error estimates.
引用
收藏
页码:1253 / 1280
页数:28
相关论文
共 44 条