Capacity expansion under uncertainty in an oligopoly using indirect reinforcement-learning

被引:13
|
作者
Oliveira, Fernando S. [1 ]
Costa, Manuel L. G. [2 ]
机构
[1] Natl Univ Singapore, NUS Business Sch, Singapore, Singapore
[2] Univ Porto, Fac Econ, Ctr Econ & Finance, Porto, Portugal
关键词
OR in energy; Capacity expansion; Computational learning; Electricity markets; Oligopoly; INVESTMENT; MARKETS; OPTIONS; IMPACT; FLEXIBILITY; GENERATION; STRATEGIES; CONTRACTS; ECONOMICS; BEHAVIOR;
D O I
10.1016/j.ejor.2017.11.013
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We model capacity expansion in oligopolistic markets, with endogenous prices, under uncertainty, considering multiple production technologies. As this environment is complex, capacity expansion is the outcome of a learning process by individual firms. We propose indirect reinforcement-learning to model the interaction between price determination and capacity decisions, in the context of an oligopoly game. We apply our model to the analysis of the Iberian electricity market, considering multiple technologies, focusing on how subsidies, the prices of CO2 emissions and gas affect the capacity expansion policies. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1039 / 1050
页数:12
相关论文
共 50 条
  • [21] Reinforcement-Learning Based Robotic Assembly of Fractured Objects Using Visual and Tactile Information
    Song, Xinchao
    Lamb, Nikolas
    Banerjee, Sean
    Banerjee, Natasha Kholgade
    2023 9TH INTERNATIONAL CONFERENCE ON AUTOMATION, ROBOTICS AND APPLICATIONS, ICARA, 2023, : 170 - 174
  • [22] Controlling blood glucose variability under uncertainty using reinforcement learning and Gaussian processes
    De Paula, Mariano
    Avila, Luis Omar
    Martinez, Ernesto C.
    APPLIED SOFT COMPUTING, 2015, 35 : 310 - 332
  • [23] Safe Multiagent Motion Planning Under Uncertainty for Drones Using Filtered Reinforcement Learning
    Safaoui, Sleiman
    Vinod, Abraham P.
    Chakrabarty, Ankush
    Quirynen, Rien
    Yoshikawa, Nobuyuki
    Di Cairano, Stefano
    IEEE TRANSACTIONS ON ROBOTICS, 2024, 40 (2529-2542) : 2529 - 2542
  • [24] Workstation Capacity Tuning using Reinforcement Learning
    Bar-Hillel, Aharon
    Di-Nur, Amir
    Ein-Dor, Liat
    Gilad-Bachrach, Ran
    Ittach, Yossi
    2007 ACM/IEEE SC07 CONFERENCE, 2010, : 593 - 603
  • [25] Reinforcement Learning Under Uncertainty: Expected Versus Unexpected Uncertainty and State Versus Reward Uncertainty
    Ez-zizi A.
    Farrell S.
    Leslie D.
    Malhotra G.
    Ludwig C.J.H.
    Computational Brain & Behavior, 2023, 6 (4) : 626 - 650
  • [26] Reinforcement learning for decision-making under deep uncertainty
    Pei, Zhihao
    Rojas-Arevalo, Angela M.
    de Haan, Fjalar J.
    Lipovetzky, Nir
    Moallemi, Enayat A.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 359
  • [27] A Deep Reinforcement Learning Approach to Sensor Placement under Uncertainty
    Jabini, Amin
    Johnson, Erik A.
    IFAC PAPERSONLINE, 2022, 55 (27): : 178 - 183
  • [28] SKILLFUL CONTROL UNDER UNCERTAINTY VIA DIRECT REINFORCEMENT LEARNING
    GULLAPALLI, V
    ROBOTICS AND AUTONOMOUS SYSTEMS, 1995, 15 (04) : 237 - 246
  • [29] Energy Technological Change and Capacity Under Uncertainty in Learning
    Shittu, Ekundayo
    IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, 2014, 61 (03) : 406 - 418
  • [30] Inland port and waterway capacity expansion model under demand uncertainty
    Guo, Liquan
    Ng, Adolf K. Y.
    Long, Jiancheng
    Li, Xixi
    COMPUTERS & INDUSTRIAL ENGINEERING, 2024, 190