Glyoxylic acetals as electrolytes for Si/Graphite anodes in lithium-ion batteries

被引:13
|
作者
Gehrlein, Lydia [1 ]
Leibing, Christian [2 ,3 ]
Pfeifer, Kristina [1 ]
Jeschull, Fabian [1 ]
Balducci, Andrea [2 ,3 ]
Maibach, Julia [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Appl Mat Energy Storage Syst IAM ESS, Hermann Von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[2] Friedrich Schiller Univ Jena, Inst Tech Chem & Environm Chem, Philosophenweg 7a, D-07743 Jena, Germany
[3] Friedrich Schiller Univ Jena, Ctr Energy & Environm Chem Jena CEEC Jena, Philosophenweg 7a, D-07743 Jena, Germany
关键词
SILICON-GRAPHITE ELECTRODES; FLUOROETHYLENE CARBONATE FEC; IN-SITU; LI; INTERPHASE; PERFORMANCE; STATE; MECHANISMS; SOLVENTS; GLYOXAL;
D O I
10.1016/j.electacta.2022.140642
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Using silicon-containing anodes in lithium-ion batteries is mainly impeded by undesired side reactions at the electrode/electrolyte interface leading to the gradual loss of active lithium. Therefore, electrolyte formulations are needed, which form a solid electrolyte interphase (SEI) that can accommodate to the volume changes of the silicon particles. In this work, we analyze the influence of two glyoxylic acetals on the cycling stability of silicon-containing graphite anodes, namely TMG (1 M LiTFSI in 1,1,2,2-tetramethoxyethane) and TEG (1 M LiTFSI in 1,1,2,2-tetraethoxyethane). The choice of these two electrolyte formulations was motivated by their positive impact on the thermal stability of LIBs. We investigate solid electrolyte decomposition products employing x-ray photoelectron spectroscopy (XPS). The cycling stability of Si/Gr anodes in each electrolyte is correlated to changes in SEI thickness, composition, and morphology upon formation and aging. This evaluation is completed by comparing the performance of TMG and TEG to two carbonate-based reference electrolytes (1 M LiTFSI in 1:1 ethylene carbonate: dimethyl carbonate and 1 M LiPF6 in the same solvent mixture). Cells cycled in TMG display inferior electrochemical performance to the two reference electrolytes. By contrast, cells cycled in TEG exhibit the best capacity retention with overall higher capacities. We can correlate this to better film-forming properties of the TEG solvent as it forms a smoother and more interconnected SEI, which can better adapt to the volume changes of the silicon. Therefore, TEG appears to be a promising electrolyte solvent for silicon-containing anodes.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Mixtures of Glyoxylic Acetals and Organic Carbonates as Electrolytes for Lithium-Ion Batteries
    Koeps, L.
    Leibing, C.
    Hess, L. H.
    Balducci, A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (01)
  • [2] Evaluation of graphite materials as anodes for lithium-ion batteries
    Cao, F
    Barsukov, IV
    Bang, HJ
    Zaleski, P
    Prakash, J
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (10) : 3579 - 3583
  • [3] Hydrocolloids as binders for graphite anodes of lithium-ion batteries
    Cuesta, Nuria
    Ramos, Alberto
    Camean, Ignacio
    Antuna, Cristina
    Garcia, Ana B.
    ELECTROCHIMICA ACTA, 2015, 155 : 140 - 147
  • [4] Coke vs graphite as anodes for lithium-ion batteries
    Shi, H
    JOURNAL OF POWER SOURCES, 1998, 75 (01) : 64 - 72
  • [5] Investigation of binder distribution in graphite anodes for lithium-ion batteries
    Mueller, Marcus
    Pfaffmann, Lukas
    Jaiser, Stefan
    Baunach, Michael
    Trouillet, Vanessa
    Scheiba, Frieder
    Scharfer, Philip
    Schabel, Wilhelm
    Bauer, Werner
    JOURNAL OF POWER SOURCES, 2017, 340 : 1 - 5
  • [6] Composite SnO-graphite anodes for lithium-ion batteries
    Lee, JY
    Zhang, RF
    Liu, ZL
    LITHIUM BATTERIES, PROCEEDINGS, 2000, 99 (25): : 136 - 143
  • [7] Emerging interfacial chemistry of graphite anodes in lithium-ion batteries
    Yao, Yu-Xing
    Yan, Chong
    Zhang, Qiang
    CHEMICAL COMMUNICATIONS, 2020, 56 (93) : 14570 - 14584
  • [8] Triethyl orthoformate as a new film-forming electrolytes solvent for lithium-ion batteries with graphite anodes
    Wang, Lishi
    Huang, Yudai
    Jia, Dianzeng
    ELECTROCHIMICA ACTA, 2006, 51 (23) : 4950 - 4955
  • [9] Systematic Investigation of Electrochemical Performances for Lithium-Ion Batteries with Si/Graphite Anodes: Effect of Electrolytes Based on Fluoroethylene Carbonate and Linear Carbonates
    Zhao, Enyou
    Gu, Yixuan
    Fang, Shaohua
    Yang, Li
    Hirano, Shin-ichi
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (03) : 2419 - 2429
  • [10] Nanostructured Si-Based Anodes for Lithium-Ion Batteries
    Zhu, Xiaoyi
    Yang, Dongjiang
    Li, Jianjiang
    Su, Fabing
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (01) : 15 - 30