Incorporation of inorganic bioceramics into electrospun scaffolds for tissue engineering applications: A review

被引:58
|
作者
Bahremandi-Toloue, Elahe [1 ,2 ]
Mohammadalizadeh, Zahra [1 ]
Mukherjee, Shayanti [2 ,3 ]
Karbasi, Saeed [1 ,4 ]
机构
[1] Isfahan Univ Med Sci, Sch Adv Technol Med, Dept Biomat & Tissue Engn, Esfahan, Iran
[2] Hudson Inst Med Res, Ritchie Ctr, Clayton, Vic, Australia
[3] Monash Univ, Dept Obstet & Gynecol, Clayton, Vic, Australia
[4] Isfahan Univ Med Sci, Dent Res Inst, Dent Implants Res Ctr, Sch Dent, Esfahan, Iran
关键词
Bioceramics; Electrospinning; Nanoparticles; Polymeric scaffolds; Tissue engineering; BETA-TRICALCIUM PHOSPHATE; EUROPIUM HYDROXIDE NANORODS; BIPHASIC CALCIUM-PHOSPHATE; BORON-NITRIDE NANOTUBES; CERIUM OXIDE NANOPARTICLES; IN-VIVO BIOCOMPATIBILITY; WALL CARBON NANOTUBES; OSTEOGENIC DIFFERENTIATION; MECHANICAL-PROPERTIES; ZINC-OXIDE;
D O I
10.1016/j.ceramint.2021.12.125
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Today, the integration of medical and engineering principles for producing biological replacements has attracted much attention. Tissue engineering is an interdisciplinary field introduced for recovery, preservation, and improvement of tissues' function. During the process of reproduction, scaffolds with the support of cells and biological materials and growth factors underlie the effective regeneration of the target tissue. Among the numerous methods, the electrospinning method has the great ability to mimic the extracellular matrix by creating a network of polymer fibers with a high surface area at the nanoscale in order to provide more binding sites for cells. Considering the capabilities and limitations of different polymers, the use of ceramics as a reinforcement phase is a promising approach. Over the past few decades, electrospun scaffolds have been developed by adding different ceramics in terms of their nature, bioinert, bioactive, and biodegradable properties. The main results are related to enhancing the mechanical properties and biological behavior of the polymeric scaffolds after the incorporation of ceramics. Enhanced hydrophilicity, antibacterial and antioxidant properties are other aspects caused by chemical interactions of ceramics and polymers. In this review, the effect of adding inorganic ceramic structures incorporated into polymeric electrospun scaffolds is discussed by highlighting the most recent studies in tissue engineering applications.
引用
收藏
页码:8803 / 8837
页数:35
相关论文
共 50 条
  • [21] In vitro and in vivo cytocompatibility of electrospun nanofiber scaffolds for tissue engineering applications
    Goonoo, N.
    Bhaw-Luximon, A.
    Jhurry, D.
    RSC ADVANCES, 2014, 4 (60) : 31618 - 31642
  • [22] PLATELET ACTIVITY OF COAXIAL ELECTROSPUN SCAFFOLDS FOR APPLICATIONS IN CARDIOVASCULAR TISSUE ENGINEERING
    Merkle, Valerie M.
    Hutchinson, Marcus
    Tran, Phat L.
    Sheriff, Jawaad
    Bluestein, Danny
    Wu, Xiaoyi
    Slepian, Marvin J.
    PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE - 2013, PT A, 2014,
  • [23] Synthetic-based blended electrospun scaffolds in tissue engineering applications
    Zahra Mohammadalizadeh
    Elahe Bahremandi-Toloue
    Saeed Karbasi
    Journal of Materials Science, 2022, 57 : 4020 - 4079
  • [24] Hybrid Polyester-Hydrogel Electrospun Scaffolds for Tissue Engineering Applications
    de Pinho, Ana Rita Goncalves
    Odila, Ines
    Leferink, Anne
    van Blitterswijk, Clemens
    Camarero-Espinosa, Sandra
    Moroni, Lorenzo
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2019, 7 (SEP):
  • [25] Shape memory poly (glycerol sebacate)-based electrospun fiber scaffolds for tissue engineering applications: A review
    Zulkifli, Zulaikha
    Tan, Jun Jie
    Ku Marsilla, Ku Ishak
    Rusli, Arjulizan
    Abdullah, Muhammad Khalil
    Shuib, Raa Khimi
    Shafiq, Mohamad Danial
    Abdul Hamid, Zuratul Ain
    JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (22)
  • [26] Scaffolds and biomaterials for tissue engineering: a review of clinical applications
    Vats, A
    Tolley, NS
    Polak, JM
    Gough, JE
    CLINICAL OTOLARYNGOLOGY, 2003, 28 (03) : 165 - 172
  • [27] A review on chitosan centred scaffolds and their applications in tissue engineering
    Ahmed, Shakeel
    Annu
    Ali, Akbar
    Sheikh, Javed
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2018, 116 : 849 - 862
  • [28] Incorporating Platelet-Rich Plasma into Electrospun Scaffolds for Tissue Engineering Applications
    Sell, Scott A.
    Wolfe, Patricia S.
    Ericksen, Jeffery J.
    Simpson, David G.
    Bowlin, Gary L.
    TISSUE ENGINEERING PART A, 2011, 17 (21-22) : 2723 - 2737
  • [29] Electrospun polycaprolactone/silk fibroin nanofibrous bioactive scaffolds for tissue engineering applications
    Nazeer, Muhammad Anwaar
    Yilgor, Emel
    Yilgor, Iskender
    POLYMER, 2019, 168 : 86 - 94
  • [30] Cross-linking methods of electrospun fibrinogen scaffolds for tissue engineering applications
    Sell, Scott A.
    Francis, Michael P.
    Garg, Koyal
    McClure, Michael J.
    Simpson, David G.
    Bowlin, Gary L.
    BIOMEDICAL MATERIALS, 2008, 3 (04)