Strength prediction of adhesive joints after cyclic moisture conditioning using a cohesive zone model

被引:34
|
作者
Mubashar, A. [1 ]
Ashcroft, I. A. [1 ]
Critchlow, G. W. [2 ]
Crocombe, A. D. [3 ]
机构
[1] Univ Loughborough, Wolfson Sch Mech & Mfg Engn, Loughborough LE11 3TU, Leics, England
[2] Univ Loughborough, Dept Mat, Loughborough LE11 3TU, Leics, England
[3] Univ Surrey, Div Mech Med & Aerosp Engn, Guildford GU2 7HX, Surrey, England
关键词
Adhesion; Finite element method; Strength prediction; Cyclic moisture; Durability; FINITE-ELEMENT APPROACH; SINGLE-LAP JOINTS; CRACK-GROWTH; PART I; FRACTURE; INTERFACE; BEHAVIOR; WATER; DURABILITY; SIMULATION;
D O I
10.1016/j.engfracmech.2011.07.010
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper presents a methodology to predict the strength of adhesive joints under variable moisture conditions. The moisture uptake in adhesive joints was determined using a history dependent moisture prediction methodology where diffusion coefficients were based on experimental cyclic moisture uptake of bulk adhesive samples. The predicted moisture concentrations and moisture diffusion history were used in a structural analysis with a cohesive zone model to predict damage and failure of the joints. A moisture concentration and moisture history dependent bilinear cohesive zone law was used. The methodology was used to determine the damage and failure in aluminium alloy - epoxy adhesive single lap joints, conditioned at 50 degrees C and good predictions of failure load were observed. The damage in the adhesive joints decreased the load carrying capacity before reaching the failure load and a nonlinear relationship between the load and displacement was observed. Changes in crack initiation and crack propagation were also observed between different types of joints. The presented methodology is generic and may be applied to different types of adhesive joint and adhesive. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2746 / 2760
页数:15
相关论文
共 50 条
  • [21] Mode I fracture of adhesive joints using tailored cohesive zone models
    M. Alfano
    F. Furgiuele
    A. Leonardi
    C. Maletta
    G. H. Paulino
    International Journal of Fracture, 2009, 157 : 193 - 204
  • [22] Mode I fracture of adhesive joints using tailored cohesive zone models
    Alfano, M.
    Furgiuele, F.
    Leonardi, A.
    Maletta, C.
    Paulino, G. H.
    INTERNATIONAL JOURNAL OF FRACTURE, 2009, 157 (1-2) : 193 - 204
  • [23] Prediction of failure behavior of adhesively bonded CFRP scarf joints using a cohesive zone model
    Sun, Ligang
    Tie, Ying
    Hou, Yuliang
    Lu, Xingxue
    Li, Cheng
    ENGINEERING FRACTURE MECHANICS, 2020, 228
  • [24] A modified cohesive zone model for fatigue delamination in adhesive joints: Numerical and experimental investigations
    Al-Azzawi, Ahmad S. M.
    Kawashita, L. F.
    Featherston, C. A.
    COMPOSITE STRUCTURES, 2019, 225
  • [25] A cohesive zone model for low cycle fatigue life prediction of solder joints
    Yang, QD
    Shim, DJ
    Spearing, SM
    MICROELECTRONIC ENGINEERING, 2004, 75 (01) : 85 - 95
  • [26] Comparison of cohesive zone elements and smoothed particle hydrodynamics for failure prediction of single lap adhesive joints
    Mubashar, A.
    Ashcroft, I. A.
    JOURNAL OF ADHESION, 2017, 93 (06): : 444 - 460
  • [27] Evaluation of Adhesive Properties Using Cohesive Zone Model : Mode I
    Lee, Chan-Joo
    Lee, Sang-Kon
    Ko, Dae-Cheol
    Kim, Byung-Min
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2009, 33 (05) : 474 - 481
  • [28] Investigation on Interfacial Bonding Strength of Anisotropic Conducive Adhesive with a New Cohesive Zone Model
    Zhang, Jun
    Lin, Yong-cheng
    Wei, Xin-li
    Huang, Liu-gang
    PRICM 7, PTS 1-3, 2010, 654-656 : 1928 - +
  • [29] STATIC FAILURE OF THE ADHESIVE AND COMBINATION JOINTS ON COLD-FORMED STEEL JOINT USING A COHESIVE ZONE MODEL APPROACH
    Anwar, Siti Nur Rahmah
    Suprobo, Priyo
    Wahyuni, Endah
    Faimun
    Anwar, Siti Aminah
    JURNAL TEKNOLOGI-SCIENCES & ENGINEERING, 2019, 81 (01): : 47 - 57
  • [30] Predicting environmental degradation of adhesive joints using a cohesive zone finite element model based on accelerated fracture tests
    Patil, O. R.
    Amieli, A.
    Datla, N. V.
    INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES, 2017, 76 : 54 - 60