Periodic solutions of nonautonomous second-order Hamiltonian systems with even-typed potentials

被引:21
|
作者
Wu, XP [1 ]
Tang, CL [1 ]
机构
[1] SW Normal Univ, Dept Math, Chongqing 400715, Peoples R China
关键词
periodic solution; second-order Hamiltonian system; coercivity; Sobolev's inequality; critical point;
D O I
10.1016/j.na.2003.08.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some existence and multiplicity theorems are obtained for periodic solutions of nonautonomous second-order Hamiltonian systems with even-typed potentials by the least action principle and the minimax methods in critical point theory. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:759 / 769
页数:11
相关论文
共 50 条
  • [31] Periodic solutions for a kind of second-order Hamiltonian Systems
    Tao, Zhulian
    Tian, Yanfang
    Dan, Qi
    WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING, VOL 1 AND 2, 2006, : 606 - +
  • [32] Periodic solutions for nonsmooth second-order Hamiltonian systems
    Deng, Yiyang
    Li, Fengying
    Li, Bingyu
    Lv, Ying
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (18) : 9502 - 9510
  • [33] PERIODIC SOLUTIONS FOR A CLASS OF SECOND-ORDER HAMILTONIAN SYSTEMS
    Bonanno, Gabriele
    Livrea, Roberto
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2005,
  • [34] Periodic solutions for second-order discrete Hamiltonian systems
    Tang, X. H.
    Zhang, Xingyong
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (10) : 1413 - 1430
  • [35] Periodic and subharmonic solutions of second-order Hamiltonian systems
    Tao, ZL
    Tang, CL
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 293 (02) : 435 - 445
  • [36] Periodic solutions for nonautonomous second-order systems with bounded nonlinearity
    Wu, XP
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 230 (01) : 135 - 141
  • [37] Homoclinic solutions for nonautonomous second-order Hamiltonian systems with a coercive potential
    Lv, Xiang
    Lu, Shiping
    Yan, Ping
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (7-8) : 3484 - 3490
  • [38] Homoclinic solutions for nonautonomous second-order Hamiltonian systems with a coercive potential
    Tang, X. H.
    Xiao, Li
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (02) : 586 - 594
  • [39] Periodic solutions of second order nonautonomous systems with the potentials changing sign
    Girardi, Mario
    Matzeu, Michele
    Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei, Matematica e Applicazioni, 1993, 4 (09):
  • [40] Multiple periodic solutions of nonautonomous second-order differential systems with (q, p)-Laplacian and partially periodic potentials
    Hu, Zhihua
    Jiang, Qin
    Ma, Sheng
    Pasca, Daniel
    MATHEMATICA SLOVACA, 2023, 73 (01) : 89 - 102