Computational Methods for Predicting Autism Spectrum Disorder from Gene Expression Data

被引:1
|
作者
Zhang, Junpeng [1 ]
Thin Nguyen [2 ]
Buu Truong [3 ]
Liu, Lin [3 ]
Li, Jiuyong [3 ]
Thuc Duy Le [3 ]
机构
[1] Dali Univ, Sch Engn, Dali, Yunnan, Peoples R China
[2] Deakin Univ, Ctr Pattern Recognit & Data Analyt, Geelong, Vic, Australia
[3] Univ South Australia, UniSA Stem, Adelaide, SA, Australia
来源
基金
澳大利亚国家健康与医学研究理事会; 中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Autism; Feature selection; ASD prognosis; Gene expression; FEATURE-SELECTION; CORTEX; TOOL;
D O I
10.1007/978-3-030-65390-3_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Autism Spectrum Disorder (ASD) is defined as polygenetic developmental and neurobiological disorders that cover a variety of development delays in social interactions. In recent years, computational methods using gene expression data have been proved to be effective in predicting ASD at the early stage. Feature selection methods directly affect the prediction performance of the ASD prognosis methods. With the advances of computational methods and exploding of highdimensional ASD gene expression data, there is a need to examine the performance of different computational techniques in predicting ASD. In this paper, we review and conduct a comparison study of 22 different feature selection methods for predicting ASD from gene expression data. The methods are categorised into traditional methods (14 methods) and network-based methods (8 methods). The experimental results have shown that the network-based methods generally outperform the traditional feature selection methods in all three accuracy measures, including AUC (area under the curve), F1-score, and Matthews Correlation Coefficient.
引用
收藏
页码:395 / 409
页数:15
相关论文
共 50 条
  • [21] Altered gene expression by rare variants in gene promoters confers risk to autism spectrum disorder
    Bonacina, Julieta
    Kelley, Lily
    Patel, Soleha
    Scotellaro, Julia
    Tovar, Paulina Gonzalez
    O'Connell, Mia
    Doan, Ryan
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 : 200 - 200
  • [22] Recessive gene disruptions in autism spectrum disorder
    Doan, Ryan N.
    Lim, Elaine T.
    De Rubeis, Silvia
    Betancur, Catalina
    Cutler, David J.
    Chiocchetti, Andreas G.
    Overman, Lynne M.
    Soucy, Aubrie
    Goetze, Susanne
    Freitag, Christine M.
    Daly, Mark J.
    Walsh, Christopher A.
    Buxbaum, Joseph D.
    Yu, Timothy W.
    [J]. NATURE GENETICS, 2019, 51 (07) : 1092 - +
  • [23] Recessive gene disruptions in autism spectrum disorder
    Ryan N. Doan
    Elaine T. Lim
    Silvia De Rubeis
    Catalina Betancur
    David J. Cutler
    Andreas G. Chiocchetti
    Lynne M. Overman
    Aubrie Soucy
    Susanne Goetze
    Christine M. Freitag
    Mark J. Daly
    Christopher A. Walsh
    Joseph D. Buxbaum
    Timothy W. Yu
    [J]. Nature Genetics, 2019, 51 : 1092 - 1098
  • [24] Genetics of autism spectrum disorder & BDNF gene
    Usha P Dave
    [J]. Molecular Cytogenetics, 7 (Suppl 1)
  • [25] Altered expression of lncRNAs in autism spectrum disorder
    Kasra Honarmand Tamizkar
    Soudeh Ghafouri-Fard
    Mir Davood Omrani
    Farkhondeh Pouresmaeili
    Shahram Arsang-Jang
    Mohammad Taheri
    [J]. Metabolic Brain Disease, 2021, 36 : 983 - 990
  • [26] Altered expression of lncRNAs in autism spectrum disorder
    Tamizkar, Kasra Honarmand
    Ghafouri-Fard, Soudeh
    Omrani, Mir Davood
    Pouresmaeili, Farkhondeh
    Arsang-Jang, Shahram
    Taheri, Mohammad
    [J]. METABOLIC BRAIN DISEASE, 2021, 36 (05) : 983 - 990
  • [27] Predicting genotypes from gene expression data
    Mary Muers
    [J]. Nature Reviews Genetics, 2012, 13 (6) : 379 - 379
  • [28] From Data to Diagnosis: The Search for Biochemical Markers of Autism Spectrum Disorder
    Vargason, Troy
    Howsmon, Daniel P.
    Hahn, Juergen
    [J]. CHEMICAL ENGINEERING PROGRESS, 2018, 114 (05) : 40 - 45
  • [29] Extracting autism spectrum disorder data from the electronic health record
    Bush, Ruth A.
    Connelly, Cynthia D.
    Perez, Alexa
    Barlow, Halsey
    Chiang, George J.
    [J]. APPLIED CLINICAL INFORMATICS, 2017, 8 (03): : 731 - 741
  • [30] Predicting symptom severity in autism spectrum disorder based on cortical thickness measures in agglomerative data
    Moradi, Elaheh
    Khundrakpam, Budhachandra
    Lewis, John D.
    Evans, Alan C.
    Tohka, Jussi
    [J]. NEUROIMAGE, 2017, 144 : 128 - 141