Voids, generic van der Waals equation of state, and transport coefficients of liquids

被引:7
|
作者
Eu, Byung Chan [1 ]
机构
[1] McGill Univ, Dept Chem, Montreal, PQ H3A 2K6, Canada
关键词
D O I
10.1039/b705542k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this Perspective, we discuss the role of voids in transport processes in liquids and the manner in which the concept of voids enters the generic van der Waals equation of state and the modi. ed free volume theory. The density fluctuation theory is then discussed and we show how the density. uctuation theory can be made a molecular theory with the help of the modified free volume theory and the generic van der Waals equation of state. The confluence of the aforementioned three theories makes it possible to calculate the transport coefficients of liquids by using the information on the equilibrium pair correlation function, which can be calculated either by an integral equation theory or Monte Carlo simulations. A number of relations between transport coe. cients are also presented, which are derived on the basis of the density fluctuation theory. Since they can be used to obtain one transport coefficient from another they can be very useful in handling experimental and theoretical data. An application of the modifed free volume theory to polymer melts is discussed as an example for a theory of transport properties of complex liquids.
引用
收藏
页码:6171 / 6186
页数:16
相关论文
共 50 条
  • [41] Generalized van der Waals-Berthelot equation of state
    A. A. Sobko
    Doklady Physics, 2008, 53 : 416 - 419
  • [42] A perturbation method for the Ornstein-Zernike equation and the generic van der waals equation of state for a square well potential model
    Eu, Byung Chan
    Qin, Yuan
    JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (14): : 3716 - 3726
  • [43] The equation of Van der Waals.
    Jeans, JH
    NATURE, 1923, 112 : 798 - 799
  • [44] Augmented van der Waals equations of state: SAFT-VR versus Yukawa based van der Waals equation
    Nezbeda, Ivo
    Melnyk, Roman
    Trokhymchuk, Andrij
    FLUID PHASE EQUILIBRIA, 2011, 309 (02) : 174 - 178
  • [45] The equation of Van der Waals and thermodynamics
    Verschaffelt, JE
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1929, 188 : 1037 - 1039
  • [46] EQUATION OF STATE NEAR THE CRITICAL POINT ON THE BASIS OF THE VAN DER WAALS MODEL FOR A WIDE CLASS OF DIELECTRIC LIQUIDS
    Alekhin, A. D.
    Abdikarimov, B. Zh.
    Bulavin, L. A.
    Ostapchuk, Yu. L.
    Rudnikov, E. G.
    Shimanskaya, Ye. T.
    UKRAINIAN JOURNAL OF PHYSICS, 2010, 55 (08): : 897 - 900
  • [47] Estimation of Van der Waals Broadening Coefficients
    Astapenko, V. A.
    Demura, A. V.
    Demchenko, G. V.
    Potapkin, B. V.
    Scherbinin, A. V.
    Umanskii, S. Ya.
    Zaitsevskii, A. V.
    20TH INTERNATIONAL CONFERENCE ON SPECTRAL LINE SHAPES, 2010, 1290 : 39 - +
  • [48] EQUATION OF STATE OF QUANTUM GASES BEYOND THE VAN DER WAALS APPROXIMATION
    Bugaev, K. A.
    Ivanytskyi, A. I.
    Sagun, V. V.
    Nikonov, E. G.
    Zinovjev, G. M.
    UKRAINIAN JOURNAL OF PHYSICS, 2018, 63 (10): : 863 - 880
  • [49] COMMENTS CONCERNING A SIMPLE EQUATION OF STATE OF THE VAN DER WAALS FORM
    WONG, JO
    PRAUSNITZ, JM
    CHEMICAL ENGINEERING COMMUNICATIONS, 1985, 37 (1-6) : 41 - 53
  • [50] Limiting temperature of pion gas with the van der Waals equation of state
    Poberezhnyuk, R. V.
    Vovchenko, V.
    Anchishkin, D. V.
    Gorenstein, M. I.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2016, 43 (09)