Three Dimensional Printing of Multiscale Carbon Fiber-Reinforced Polymer Composites Containing Graphene or Carbon Nanotubes

被引:4
|
作者
Residori, Sara [1 ]
Dul, Sithiprumnea [2 ,3 ]
Pegoretti, Alessandro [2 ,3 ]
Fambri, Luca [2 ,3 ]
Pugno, Nicola M. [1 ,4 ]
机构
[1] Univ Trento, Dept Civil Environm & Mech Engn, Lab Bioinspired Bion Nano Meta Mat & Mech, Via Mesiano 77, I-38123 Trento, Italy
[2] Univ Trento, Dept Ind Engn, Via Sommar 9, I-38123 Trento, Italy
[3] Univ Trento, INSTM Res Unit, Via Sommar 9, I-38123 Trento, Italy
[4] Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
关键词
multiscale composites; mechanical properties; fused filament fabrication; electrical conductivity; selective parameters; MECHANICAL-PROPERTIES; ELASTIC-MODULUS; 3D; NANOCOMPOSITES; HARDNESS;
D O I
10.3390/nano12122064
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Three-dimensional printing offers a promising, challenging opportunity to manufacture component parts with ad hoc designed composite materials. In this study, the novelty of the research is the production of multiscale composites by means of a solvent-free process based on melt compounding of acrylonitrile-butadiene-styrene (ABS), with various amounts of microfillers, i.e., milled (M) carbon fibers (CFs) and nanofillers, i.e., carbon nanotubes (CNTs) or graphene nanoplatelets (GNPs). The compounded materials were processed into compression molded sheets and into extruded filaments. The latter were then used to print fused filament fabrication (FFF) specimens. The multiscale addition of the microfillers inside the ABS matrix caused a notable increase in rigidity and a slight increase in strength. However, it also brought about a significant reduction of the strain at break. Importantly, GNPs addition had a good impact on the rigidity of the materials, whereas CNTs favored/improved the composites' electrical conductivity. In particular, the addition of this nanofiller was very effective in improving the electrical conductivity compared to pure ABS and micro composites, even with the lowest CNT content. However, the filament extrusion and FFF process led to the creation of voids within the structure, causing a significant loss of mechanical properties and a slight improvement of the electrical conductivity of the printed multiscale composites. Selective parameters have been presented for the comparison and selection of compositions of multiscale nanocomposites.
引用
下载
收藏
页数:25
相关论文
共 50 条
  • [21] Three-dimensional printing of continuous carbon fiber-reinforced polymer composites via in-situ pin-assisted melt impregnation
    An, Yongsan
    Myung, Jun Ho
    Yoon, Jihyun
    Yu, Woong-Ryeol
    ADDITIVE MANUFACTURING, 2022, 55
  • [22] Interfacial improvement of carbon fiber-reinforced methylphenylsilicone resin composites with sizing agent containing functionalized carbon nanotubes
    Wu, Guangshun
    Ma, Lichun
    Liu, Li
    Wang, Yuwei
    Huang, Yudong
    JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2015, 29 (21) : 2295 - 2310
  • [23] CARBON FIBER-REINFORCED COMPOSITES - EFFECT OF FIBER SURFACE ON POLYMER PROPERTIES
    KO, YS
    FORSMAN, WC
    DZIEMIANOWICZ, TS
    POLYMER ENGINEERING AND SCIENCE, 1982, 22 (13): : 805 - 814
  • [24] Multiscale Analysis on Electrical Properties of Carbon Fiber-Reinforced Wood Composites
    Zhu, Xiaolong
    Sun, Liping
    BIORESOURCES, 2015, 10 (02): : 2392 - 2405
  • [25] Hybrid carbon fiber-carbon nanotubes reinforced polymer composites: A review
    Zakaria, Muhammad Razlan
    Akil, Hazizan Md
    Kudus, Muhammad Helmi Abdul
    Ullah, Faheem
    Javed, Fatima
    Nosbi, Norlin
    COMPOSITES PART B-ENGINEERING, 2019, 176
  • [26] STRATEGIC REINFORCEMENT OF HYBRID CARBON FIBER-REINFORCED POLYMER COMPOSITES
    BRADLEY, PD
    HARRIS, SJ
    JOURNAL OF MATERIALS SCIENCE, 1977, 12 (12) : 2401 - 2410
  • [27] Life cycle assessment of carbon fiber-reinforced polymer composites
    Sujit Das
    The International Journal of Life Cycle Assessment, 2011, 16 : 268 - 282
  • [28] Life cycle assessment of carbon fiber-reinforced polymer composites
    Das, Sujit
    INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2011, 16 (03): : 268 - 282
  • [29] Influence of water absorption on the interlaminar behavior of carbon fiber-reinforced composites containing halloysite nanotubes
    Kim, Eunjung
    Ahn, Cheol-Hee
    Yu, Woong-Ryeol
    Na, Wonjin
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2023, 175
  • [30] Three-dimensional numerical modelling of drilling of carbon fiber-reinforced plastic composites
    Isbilir, Ozden
    Ghassemieh, Elaheh
    JOURNAL OF COMPOSITE MATERIALS, 2014, 48 (10) : 1209 - 1219