A STUDY ON THE INTEGRATION OF PRE-TRAINED SSL, ASR, LM AND SLU MODELS FOR SPOKEN LANGUAGE UNDERSTANDING

被引:8
|
作者
Peng, Yifan [1 ]
Arora, Siddhant [1 ]
Higuchi, Yosuke [1 ]
Ueda, Yushi [1 ]
Kumar, Sujay [1 ]
Ganesan, Karthik [1 ]
Dalmia, Siddharth [1 ]
Chang, Xuankai [1 ]
Watanabe, Shinji [1 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
spoken language understanding; low resource; pre-trained models;
D O I
10.1109/SLT54892.2023.10022399
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Collecting sufficient labeled data for spoken language understanding (SLU) is expensive and time-consuming. Recent studies achieved promising results by using pre-trained models in low-resource scenarios. Inspired by this, we aim to ask: which (if any) pre-training strategies can improve performance across SLU benchmarks? To answer this question, we employ four types of pre-trained models and their combinations for SLU. We leverage self-supervised speech and language models (LM) pre-trained on large quantities of unpaired data to extract strong speech and text representations. We also explore using supervised models pre-trained on larger external automatic speech recognition (ASR) or SLU corpora. We conduct extensive experiments on the SLU Evaluation (SLUE) benchmark and observe self-supervised pre-trained models to be more powerful, with pre-trained LM and speech models being most beneficial for the Sentiment Analysis and Named Entity Recognition task, respectively.
引用
收藏
页码:406 / 413
页数:8
相关论文
共 50 条
  • [41] Prompt Tuning for Discriminative Pre-trained Language Models
    Yao, Yuan
    Dong, Bowen
    Zhang, Ao
    Zhang, Zhengyan
    Xie, Ruobing
    Liu, Zhiyuan
    Lin, Leyu
    Sun, Maosong
    Wang, Jianyong
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), 2022, : 3468 - 3473
  • [42] A Close Look into the Calibration of Pre-trained Language Models
    Chen, Yangyi
    Yuan, Lifan
    Cui, Ganqu
    Liu, Zhiyuan
    Ji, Heng
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 1343 - 1367
  • [43] Deep Entity Matching with Pre-Trained Language Models
    Li, Yuliang
    Li, Jinfeng
    Suhara, Yoshihiko
    Doan, AnHai
    Tan, Wang-Chiew
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2020, 14 (01): : 50 - 60
  • [44] InA: Inhibition Adaption on pre-trained language models
    Kang, Cheng
    Prokop, Jindrich
    Tong, Lei
    Zhou, Huiyu
    Hu, Yong
    Novak, Daniel
    NEURAL NETWORKS, 2024, 178
  • [45] Leveraging Pre-trained Language Models for Gender Debiasing
    Jain, Nishtha
    Popovic, Maja
    Groves, Declan
    Specia, Lucia
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 2188 - 2195
  • [46] A Survey of Knowledge Enhanced Pre-Trained Language Models
    Hu, Linmei
    Liu, Zeyi
    Zhao, Ziwang
    Hou, Lei
    Nie, Liqiang
    Li, Juanzi
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (04) : 1413 - 1430
  • [47] Exploring Robust Overfitting for Pre-trained Language Models
    Zhu, Bin
    Rao, Yanghui
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, 2023, : 5506 - 5522
  • [48] Self-conditioning Pre-Trained Language Models
    Suau, Xavier
    Zappella, Luca
    Apostoloff, Nicholas
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [49] Commonsense Knowledge Transfer for Pre-trained Language Models
    Zhou, Wangchunshu
    Le Bras, Ronan
    Choi, Yejin
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, 2023, : 5946 - 5960
  • [50] Pre-trained models for natural language processing: A survey
    QIU XiPeng
    SUN TianXiang
    XU YiGe
    SHAO YunFan
    DAI Ning
    HUANG XuanJing
    Science China(Technological Sciences), 2020, 63 (10) : 1872 - 1897