Weil algebra;
Weil bundle;
classical linear connection;
natural operator;
D O I:
10.4064/ap103-3-7
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We prove that the problem of finding all Mf(m)-natural operators B : Q -> QT(A) lifting classical linear connections del on m-manifolds M to classical linear connections B-M(del) on the Weil bundle (TM)-M-A corresponding to a p-dimensional (over R) Weil algebra A is equivalent to the one of finding all Mf(m)-natural operators C : Q -> (T-p-1(1),T*circle times T*circle times T) transforming classical linear connections V on m-manifolds M into base-preserving fibred maps C-M(del) : (Tp-1M)-M-1 = circle plus(p-1)(M) TM -> T*M circle times T*M circle times TM.