Lifshitz transition in triangular lattice Kondo-Heisenberg model*

被引:0
|
作者
Zhang, Lan [1 ,2 ]
Zhong, Yin [1 ,2 ]
Luo, Hong-Gang [1 ,2 ,3 ]
机构
[1] Lanzhou Univ, Minist Educ, Sch Phys Sci & Technol, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ, Minist Educ, Key Lab Magnetism & Magnet Mat, Lanzhou 730000, Peoples R China
[3] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Kondo-Heisenberg model; Lifshitz transition; heavy-fermion systems; HEAVY FERMIONS; POINT;
D O I
10.1088/1674-1056/ab8da4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Motivated by recent experimental progress on triangular lattice heavy-fermion compounds, we investigate possible Lifshitz transitions and the scanning tunnel microscope (STM) spectra of the Kondo-Heisenberg model on the triangular lattice. In the heavy Fermi liquid state, the introduced Heisenberg antiferromagnetic interaction (J(H)) results in the twice Lifshitz transition at the case of the nearest-neighbour electron hopping but with next-nearest-neighbour hole hopping and the case of the nearest-neighbour hole hopping but with next-nearest-neighbour electron hopping, respectively. Driven byJ(H), the Lifshitz transitions on triangular lattice are all continuous in contrast to the case on square lattice. Furthermore, the STM spectra shows rich line-shape which is influenced by the Kondo couplingJ(K), the Heisenberg antiferromagnetic interactionJ(H), and the ratio of the tunneling amplitude of f-electront(f)versus conduction electront(c). Our work provides a possible scenario to understand the Fermi surface topology and the quantum critical point in heavy-fermion compounds.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Evolution of Topological End States in the One-Dimensional Kondo-Heisenberg Model with Site Modulation
    Xie, Neng
    Hu, Danqing
    Chen, Shu
    Yang, Yi-feng
    [J]. CHINESE PHYSICS LETTERS, 2022, 39 (11)
  • [32] Second-order phase transition in the Heisenberg model on a triangular lattice with competing interactions
    Tamura, Ryo
    Tanaka, Shu
    Kawashima, Naoki
    [J]. PHYSICAL REVIEW B, 2013, 87 (21)
  • [33] Partial Disorder in an Ising-Spin Kondo Lattice Model on a Triangular Lattice
    Ishizuka, Hiroaki
    Motome, Yukitoshi
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (25)
  • [34] Many-body Chern insulator in the Kondo lattice model on a triangular lattice
    Ido, Kota
    Misawa, Takahiro
    [J]. PHYSICAL REVIEW B, 2024, 109 (24)
  • [35] Skyrmion crystal phases in Kondo lattice model on triangular lattices
    Jana, Satyabrata
    Reja, Sahinur
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2023, 35 (34)
  • [36] Is there a phase transition in the isotropic Heisenberg anti-ferromagnet on the triangular lattice?
    Stephan, W
    Southern, BW
    [J]. CANADIAN JOURNAL OF PHYSICS, 2001, 79 (11-12) : 1459 - 1461
  • [37] Electric and magnetic properties of higher-spin Kondo-Heisenberg models at strong coupling
    Masui, Riku
    Totsuka, Keisuke
    [J]. PHYSICAL REVIEW B, 2022, 106 (01)
  • [38] Magnetic phases of the triangular Kondo lattice
    Kessler, M.
    Eder, R.
    [J]. PHYSICAL REVIEW B, 2020, 102 (23)
  • [39] Bilinear-biquadratic anisotropic Heisenberg model on a triangular lattice
    Pires, A. S. T.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2013, 340 : 97 - 101
  • [40] Bilinear-biquadratic anisotropic Heisenberg model on a triangular lattice
    [J]. Pires, A.S.T. (antpires@fisica.ufmg.br), 1600, Elsevier B.V., Netherlands (340):