Sustainable, electrically-conductive bioepoxy nanocomposites

被引:13
|
作者
Varghai, Daniel [1 ]
Maiorana, Anthony [3 ]
Meng, Qingkai [2 ]
Gross, Richard A. [3 ]
Manas-Zloczower, Ica [2 ]
机构
[1] Case Western Reserve Univ, Biomed Engn, 10900 Euclid Ave, Cleveland, OH 44106 USA
[2] Case Western Reserve Univ, Dept Macromol Sci & Engn, 10900 Euclid Ave, Cleveland, OH 44106 USA
[3] Rensselaer Polytech Inst, Dept Chem & Chem Biol, 110 8th St, Troy, NY 12180 USA
基金
美国国家科学基金会;
关键词
Biobased epoxy; Carbon nanotubes; Percolation; Electrical conductivity; Nanocomposite; Dispersion; NANOTUBE-EPOXY COMPOSITES; MULTIWALL CARBON NANOTUBES; MECHANICAL-PROPERTIES; RHEOLOGICAL PROPERTIES; PERCOLATION; MATRIX; REINFORCEMENT; MWCNT/EPOXY; SUSPENSIONS; MORPHOLOGY;
D O I
10.1016/j.polymer.2016.11.028
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Biobased epoxy nano-composites composed of untreated multi-wall-carbon-nanotubes (MWCNT) and diphenolic acid-derived biobased epoxy: diglycidyl ether of diphenolate n-butyl ester (DGEDP-Bu), were fabricated. Electrical, theological, and mechanical percolation thresholds were compared between bio-based and commercial bisphenol A (DGEBA) epoxy composites. For both epoxies, nanocomposites loaded with 0.05-0.2 wt % MWCNT's exhibited electrical and rheological percolation at 0.05 wt % and 0.2 wt % respectively. DMA and tensile results revealed that DGEDP-Bu composites exhibited equivalent or superior properties to DGEBA composites. With 0.2 wt % MWCNT's, DGEDP-Bu nanocomposites exhibited 68% higher electrical conductivity and a three-fold higher rheological yield stress than those made from DGEBA. Rheological characterization corroborated that continuous MWCNT networks are formed within epoxies between 0.1 and 0.2 wt % MWCNT's. Moreover, upon MWCNT loading, DGEDP-Bu demonstrates equal mechanical performance and better electrical conductivity than DGEBA. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:292 / 301
页数:10
相关论文
共 50 条
  • [31] Preparation and properties of polypropylene/graphite electrically conductive nanocomposites
    Quan, CZ
    Shen, JW
    Chen, XM
    ACTA POLYMERICA SINICA, 2003, (06) : 831 - 836
  • [32] Stretchable electrically conductive and high gas barrier nanocomposites
    Cho, Chungyeon
    Song, Yixuan
    Allen, Ryan
    Wallace, Kevin L.
    Grunlan, Jaime C.
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (08) : 2095 - 2104
  • [33] Electrically Conductive Metal Polymer Nanocomposites for Electronics Applications
    Mikko Karttunen
    Pekka Ruuskanen
    Ville Pitkänen
    Willem M. Albers
    Journal of Electronic Materials, 2008, 37 : 951 - 954
  • [34] Laser formation of electrically conductive nanocomposites for bioelectronic applications
    Demidenko, N. A.
    Kuksin, A., V
    Murashko, D. T.
    Cherepanova, N. G.
    Semak, A. E.
    Bychkov, V. N.
    Komarchev, A. S.
    Eganova, E. M.
    Dudin, A. A.
    Pavlov, A. A.
    Gerasimenko, A. Yu
    3D PRINTED OPTICS AND ADDITIVE PHOTONIC MANUFACTURING II, 2020, 11349
  • [35] Engineering thermally and electrically conductive biodegradable polymer nanocomposites
    Guo, Yichen
    Zuo, Xianghao
    Xue, Yuan
    Tang, Jinghan
    Gouzman, Michael
    Fang, Yiwei
    Zhou, Yuchen
    Wang, Likun
    Yu, Yingjie
    Rafailovich, Miriam H.
    COMPOSITES PART B-ENGINEERING, 2020, 189
  • [36] Mechanically strong and electrically conductive multilayer MXene nanocomposites
    Lipton, Jason
    Weng, Guo-Ming
    Alhabeb, Mohamed
    Maleski, Kathleen
    Antonio, Francisco
    Kong, Jaemin
    Gogotsi, Yury
    Taylor, Andre D.
    NANOSCALE, 2019, 11 (42) : 20295 - 20300
  • [37] Benzoxazine-functionalized multi-walled carbon nanotubes for preparation of electrically-conductive polybenzoxazines
    Wang, Yie-Hsiang
    Chang, Chia-Ming
    Liu, Ying-Ling
    POLYMER, 2012, 53 (01) : 106 - 112
  • [38] Production of electrically-conductive nanoscale filaments by sulfate-reducing bacteria in the microbial fuel cell
    Eaktasang, Numfon
    Kang, Christina S.
    Lim, Heejun
    Kwean, Oh Sung
    Cho, Suyeon
    Kim, Yohan
    Kim, Han S.
    BIORESOURCE TECHNOLOGY, 2016, 210 : 61 - 67
  • [39] Electrically conductive nanocomposites of aromatic polydisulfide/expanded graphite
    Song, L. N.
    Xiao, M.
    Meng, Y. Z.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2006, 66 (13) : 2156 - 2162
  • [40] Electrically conductive metal polymer nanocomposites for electronics applications
    Karttunen, Mikko
    Ruuskanen, Pekka
    Pitkanen, Ville
    Albers, Willem M.
    JOURNAL OF ELECTRONIC MATERIALS, 2008, 37 (07) : 951 - 954